Efficient estimation of the friction factor for forced laminar flow in axially symmetric corrugated pipes
Rosen Esquivel, P.I.; ten Thije Boonkkamp, J.H.M.; Dam, J.A.M.; Mattheij, R.M.M.

Published: 01/01/2010

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):
Draft: Efficient estimation of the friction factor for forced laminar flow in axially symmetric corrugated pipes

by

P.I. Rosen Esquivel, J.H.M. ten Thije Boonkkamp,
J.A.M. Dam, R.M.M. Mattheij
ABSTRACT

In this paper we present an efficient method for calculating the friction factor for forced laminar flow in arbitrary axially symmetric pipes. The approach is based on an analytic expression for the friction factor, obtained after integrating the Navier-Stokes equations over a segment of the pipe. The friction factor is expressed in terms of surface integrals over the pipe wall, these integrals are then estimated by means of approximate velocity and pressure profiles computed via the method of slow variations. Our method for computing the friction factor is validated by comparing the results, to those obtained using CFD techniques for a set of examples featuring pipes with sinusoidal walls. The amplitude and wavelength parameters are used for describing their influence on the flow, as well as for characterizing the cases in which the method is applicable. Since the approach requires only numerical integration in one dimension, the method proves to be much faster than general CFD simulations, while predicting the friction factor with adequate accuracy.

1 INTRODUCTION

The effect of wall shape on the friction factor of forced flow through pipes and hoses is of interest in many applications such as LNG transfer hoses [1]. Several numerical and experimental studies have shown that the contribution of wall shape is not trivial, even in the laminar case. If wall shape of corrugated pipes is translated into an equivalent wall roughness, it is found that the friction factor differs considerably from the values obtained from the classical Moody diagram [2].

Despite the wide use of corrugated pipes or hoses, the effects of wall shape on the flow are commonly obtained from one-phase flow pressure drop experiments or CFD computational experiments. For optimization of flow paths however, both methods soon become non affordable and faster calculation methods are required. The study of flow in non-straight pipes dates back to Nikuradse’s experiments [3], whose results obtained from artificially roughened pipes, were later arranged in the more well-
known form of the Moody Diagram [2]. In the Moody diagram, the friction factor for laminar flow appears as independent of wall roughness, but in general the friction factor for laminar flow in corrugated pipes has been found to be dependent on the specific wall shape [4–6].

Several approaches for the calculation of flow in corrugated pipes have been suggested, among the ones based on CFD, we mention the publications by Mahmud et al. [7] and Blackburn et al. [6] for the case of laminar flow, and the publications by Pisarenco et al. [8] and Van der Linden et al. [9], for turbulent flow. Still, even after reducing the domain of calculation to one single period in two dimensions, the computational costs can still be high for certain situations, for instance, when one is interested in optimization of flow paths, or in performing calculations for a large network of interconnected hydraulic components.

In this paper we develop a method for estimating the Darcy friction factor in axially symmetric pipes of arbitrary shape. The method is accurate and very efficient because it only requires numerical integration in one dimension. The range of applicability of the method is discussed and presented via a comparison with numerical integration in one dimension. The paper is organized as follows. We start by presenting the governing equations and geometry. Directly from the governing equations, we derive an analytical expression for the friction factor in terms of surface integrals over the pipe wall. In order to compute or approximate these integrals, we require the solution for the pressure and the axial velocity component at the wall of the pipe. We solve this problem by using approximate solutions for the pressure and the velocity, obtained via the method of slow variations. For completeness we include the derivation of this asymptotic expansions. Based on this expansion we finally obtain approximate formulas for estimating the friction factor. Finally the accuracy of the method is studied and discussed.

2 GOVERNING EQUATIONS

We consider the Navier-Stokes equations for steady, incompressible, axially symmetric, laminar flow in cylindrical coordinates

\[
U_X U_V + V_U R = \nu \left( U_{XX} + U_{RR} + \frac{1}{R} V_R \right) - \frac{1}{\rho} P_X, \quad (1a)
\]

\[
U V_X + V V_R = \nu \left( V_{XX} + V_{RR} + \frac{1}{R} V_R \right) - \frac{1}{\rho} P_R, \quad (1b)
\]

\[
U_X + V_R + \frac{1}{R} V = 0, \quad (1c)
\]

where the corresponding variables are the axial coordinate \(X\), the radial coordinate \(R\), the axial velocity \(U\), the radial velocity \(V\), and the pressure \(P\). The constants \(\nu\) and \(\rho\) represents the kinematic viscosity and the density of the fluid, respectively. The angle component does not play a role due to the assumption of axially symmetric flow.

The geometry under consideration is an axially symmetric pipe, depicted as in Figure 1. The location of the wall of the pipe, can be described in terms of the cylindrical basis vectors \(e_R, e_\theta, e_Z\), via the parametrization \(X(\Theta, X) = R(X)e_R + X e_\theta\), with parameters \(0 \leq \Theta < 2\pi, 0 \leq X \leq L\). We assume \(R\) to be smooth, consequently, the outer unit normal vector \(n\), and the surface element \(dS\) can be expressed as

\[
n = \frac{e_R - \bar{R}'(X)e_\theta}{\sqrt{1 + \bar{R}'(X)^2}}, \quad (2a)
\]

\[
dS = \bar{R}(X)\sqrt{1 + \bar{R}'(X)^2} d\Theta dX. \quad (2b)
\]

As boundary conditions we consider no-slip at the wall of the pipe, and a prescribed constant flow rate \(\bar{Q}\), i.e.,

\[
U(X, \bar{R}(X)) = V(X, \bar{R}(X)) = 0, \quad 0 \leq X \leq L \quad (3a)
\]

\[
\bar{Q} = \int_{\Gamma_{in}} U dS = 2\pi \int_0^{\bar{R}(0)} RU(X, R) dR. \quad (3b)
\]

2.1 The Darcy Friction Factor

A quantity of interest in the analysis of pipe flow is the pressure drop. The pressure drop is directly related to the mean flow rate, and it determines the power requirements of the device to maintain the flow. In practice, for straight pipes, it is convenient to express the pressure loss as follows [10]

\[
\Delta P = f \frac{L}{D} \frac{\rho U^2}{2}, \quad (4)
\]

where, \(\Delta P = P_{in} - P_{out}\) is the pressure drop over a segment of length \(L\), \(f\) is the Darcy friction factor, \(D\) is the diameter of the pipe, and \(U\) is the mean flow velocity.
pipe, \( \rho \) is the density and \( U_0 \) is the average of the velocity over the cross section. In the case of laminar flow, i.e., for Poiseuille flow, the friction factor takes the form
\[
f = \frac{64}{Re}.
\]  
(5)

where \( \text{Re} \) is the Reynolds number, defined as
\[
\text{Re} := \frac{U_0 D}{\nu}.
\]  
(6)

When the radius of the pipe is not constant, one needs to choose a characteristic radius and average velocity, in this paper we select the respective values at the inlet of the pipe, i.e. \( D = 2 \bar{R}(0) \) and,
\[
\bar{U}_0 = \frac{1}{\pi \bar{R}^2(0)} \int_{\Gamma_{\text{in}}} U \, dS.
\]  
(7)

The expression in (4) can be used as a lumped model for describing the flow in any kind of pipe. The main difficulty is to efficiently determine a friction factor that accurately predicts the pressure drop.

### 2.2 Integral Expression for the Friction Factor

By integrating the axial momentum equation (1a) we can obtain an expression for the pressure loss in terms of surface integrals over the pipe wall \( \Gamma \). To this purpose, we first rewrite (1a), in the following form
\[
\nabla \cdot (\nabla \bar{X}) = -\frac{1}{\rho} \nabla \cdot (P \bar{e}_x) + \nu \nabla \cdot (\nabla \bar{X}),
\]  
(8)

where \( \bar{V} = U \bar{e}_x + \bar{V} \bar{e}_n \), and where we used \( P_x = \nabla \cdot (P \bar{e}_x) \), and \( \nabla \cdot \nabla \bar{X} = \nabla \cdot (\nabla \bar{V}) \). Integrating over the domain \( \Omega \), see Figure 1, and applying the divergence theorem we get
\[
\int_{\partial \Omega} \bar{U} \nabla \cdot n dS = -\frac{1}{\rho} \int_{\partial \Omega} P_n \bar{x} dS + \nu \int_{\partial \Omega} \frac{\partial U}{\partial \bar{n}} dS,
\]  
(9)

where \( n_x = \bar{n} \cdot \bar{e}_x \). Next, we split the surface of integration \( \partial \Omega = \Gamma_{\text{in}} \cup \Gamma_{\text{out}} \cup \Gamma \), as sketched in Figure 1. After using the no-slip condition (3a), and rearranging terms we get
\[
\int_{\Gamma_{\text{in}}} P dS - \int_{\Gamma_{\text{out}}} P dS = \rho \left[ \int_{\Gamma_{\text{out}}} U^2 dS - \int_{\Gamma_{\text{in}}} U^2 dS \right] + \int_{\Gamma} P_n \bar{x} dS - \mu \int_{\partial \Omega} \frac{\partial U}{\partial \bar{n}} dS.
\]  
(10)

In the following, we restrict ourselves to the case of periodic pipes, i.e., \( \bar{R}(X) = \bar{R}(X + L) \). In this particular case the expression for the pressure loss derived above simplifies greatly. Since the flow is steady, we can conclude that the velocity field \( \bar{V} \) is periodic as well, from which it follows that the integrals over \( \Gamma_{\text{in}} \), cancel with the ones over \( \Gamma_{\text{out}} \). In the end, we are left with the following expression for the pressure drop over one period, i.e., from section \( X = 0 \) to \( X = L \),
\[
\Delta P = \frac{1}{\bar{R}_{\text{in}}} \int_{\Gamma} P_n \bar{x} dS - \frac{\mu}{\bar{R}_{\text{in}}} \int_{\Gamma} \frac{\partial U}{\partial \bar{n}} dS,
\]  
(11)

where \( n_x \) is the \( X \)-component of the normal vector to the surface, and \( \Gamma \) is the wall of the pipe between \( X = 0 \) and \( X = L \). This formula also tells us that the pressure drop consists of two parts, one due to skin friction, \( \Delta P_{\text{s}} \), and one due to the pressure forces acting on the wall of the pipe, \( \Delta P_{\text{p}} \). In the particular case of a straight pipe, i.e., for Poiseuille flow, \( n_x = 0 \) and consequently (11) only contains the integral due to skin friction \( \Delta P_{\text{s}} \). After substituting the parabolic profile for \( \bar{U} \), we recover the result (5), for the laminar friction factor in a straight pipe.

In order to be able to use (11) for computing the friction factor, we need to approximate the normal derivative \( \partial U / \partial \bar{n} \), and the pressure \( P \) at the wall of the pipe. We do this via the method of slow variations.

### 3 METHOD OF SLOW VARIATIONS

The method of slow variations exploits the geometric characteristics of boundaries that vary more slowly in some direction than others. The key of the method is to rescale the geometry in such a way that the variations become of the same order. This crucial step, enables us to take a geometrical parameter and transfer it as a coefficient in to the scaled equations, which allows us to write the solution as an asymptotic expansion. One of the remarkable properties of the method is that it can handle arbitrarily large variations, provided that they take place slowly [11].

Asymptotic solutions for flow in axially symmetric pipes have been derived in several papers [11–13]. The derivation we present here follows the line of the paper by Kotorynski [13]. Before starting with the method of slow variations, we need to rewrite the Navier-Stokes equations (1) in dimensionless form, by defining the following variables
\[
u^* = \frac{U^*}{U_0^*}, \quad r^* = \frac{R^*}{R_0}, \quad \bar{P}^* = \frac{p}{\rho U_0^2}.
\]  
(12)

Substituting these variables in (1) and applying the chain rule we
for the functions in (16), as follows.

allows us to vary this parameter, while keeping the domain fixed.

ometry into the equation, where it appears as a coefficient, which

is comparable to the variation of the radius. Formally this is done

a proper scaling, we can obtain a domain in which the period is

radius is of the form

the expression for the radius if available. For instance if the pipe

in the axial direction. Such parameter can be taken directly from

sionless parameter characterizing the slow variation of the radius

period of the pipe

where $h$ is the scaled radius of the pipe, and $\varepsilon$ is a small dimensionless parameter characterizing the slow variation of the radius in the axial direction. Such parameter can be taken directly from the expression for the radius if available. For instance if the pipe radius is of the form $R(X) = (1 + \varepsilon^2 X^2)^{1/2}$, the parameter can be identified. In the case of a periodic pipe one can consider the maximum variation of the radius $a$, and compare it to the period of the pipe $L$, i.e., we define $\varepsilon := a/L$. Then, by applying a proper scaling, we can obtain a domain in which the period is comparable to the variation of the radius. Formally this is done by defining the new variables

$$x = \varepsilon x^e, r = r^e, u = u^e, v = v^e, \varepsilon^{-1} p = p^e. \quad (15)$$

Substituting these variables in (13) and multiplying the second and third equations by $\varepsilon$ and $\varepsilon^{-1}$, respectively, we obtain

$$\varepsilon \text{Re}(uu_x + vu_r) = \varepsilon^2 u_{xx} + u_{rr} + \frac{1}{r} u_r - \text{Re} \, p_x, \quad (16a)$$

$$\varepsilon^3 \text{Re}(uv_x + vv_r) = \varepsilon^4 v_{xx} + \varepsilon^2 \left( v_{rr} + \frac{1}{r} v_r - \frac{1}{r^2} v_r \right) - \text{Re} \, p_r, \quad (16b)$$

$$u_x + v_r + \frac{v}{r} = 0. \quad (16c)$$

As it can be noticed, the parameter $\varepsilon$ is transferred from the geometry into the equation, where it appears as a coefficient, which allows us to vary this parameter, while keeping the domain fixed. Formally this means that we can write an asymptotic expansion for the functions in (16), as follows

$$g(x,r;\varepsilon) = \sum_{i=0}^{\infty} g_i(x,r)\varepsilon^i, \quad (17)$$

where $g$ is a generic variable, $g = u, v, p$. By substituting these expressions into (16), and grouping the variables with respect to their order in $\varepsilon$, we can get a set of equations for each of the orders in the asymptotic expansion. The boundary conditions for the resulting systems are

$$u_i(x,h(x)) = v_i(x,h(x)) = 0, \quad 0 \leq x \leq \frac{a}{D}. \quad (18)$$

and for the scaled fluxes $Q_i$, defined as

$$Q_i := 2\pi \int_0^{h(x)} ru_i(x,r)dr. \quad (19)$$

which due to continuity is independent of $x$, and thus constant. The dimensionless flux $Q_i$ can be split as $Q = Q_0 + \varepsilon^i Q_1 + \varepsilon^2 Q_2 + \ldots$. Since this equation must hold for arbitrary $\varepsilon$, it follows that

$$Q_0 = Q, \quad Q_i = 0 \text{ for } i = 2,3,\ldots \quad (20)$$

Furthermore, the scaled flux can be written as

$$Q_0 = 2\pi \int_0^{h(0)} ru(x,r)dr = \frac{2\pi}{U_0} \int_0^{h(0)} rU(0,Dr)dr, \quad (21)$$

and substituting $U_0$ from (7), we get

$$Q_0 = \frac{\pi R^2(0)}{\int_0^{R(0)} RU(0,R)dR} \int_0^{Dh(0)} \frac{\eta}{D^2} U(0,\eta)d\eta = \frac{\pi}{4}. \quad (22)$$

3.1 Reformulation in slowly varying variables

Now we proceed to rescale (13), by using the assumption that the radius of the pipe varies slowly in the axial direction. This means that the radius of the pipe $\tilde{R}(X)$ can be written as

$$Dh \left( \frac{\varepsilon}{D} X \right) = \tilde{R}(X), \quad (14)$$

where

$$\begin{align*}
\text{Re}(u^e u^e_x + v^e u^e_r) &= u^e_{xx} + u^e_{rr} + \frac{1}{r} u^e_r - \text{Re} \, p^e_x, \\
\text{Re}(u^e v^e_x + v^e v^e_r) &= v^e_{xx} + v^e_{rr} + \frac{1}{r} v^e_r - \frac{1}{r^2} v^e_r - \text{Re} \, p^e_r, \\
u^e_x + v^e_r + \frac{v^e}{r} &= 0.
\end{align*} \quad (13a)$$

Obtaining

$$u^e_x + v^e_r + \frac{1}{r^2} v^e = 0. \quad (13c)$$

3.2 Solving for the leading term

The equations for the leading term can be obtained from (16), by setting $\varepsilon = 0$. The equations read

$$u_{0,rr} + \frac{1}{r} u_{0,r} - \text{Re} \, p_{0,x} = 0, \quad (23a)$$

$$\text{Re} \, p_{0,r} = 0, \quad (23b)$$

$$u_{0,x} + v_{0,r} + \frac{v_0}{r} = 0. \quad (23c)$$

From (23b), we conclude that $p_0$ is only function of $x$, and after multiplying (23a) by $r$ and integrating with respect to $r$ we get

$$ru_{0,r} = \text{Re} \, p_{0,x} \frac{r^2}{2} + c_1(x). \quad (24)$$
By evaluating the previous expression at $r = 0$ we find $c_1(x) \equiv 0$, and integrating once more with respect to $r$ we get

$$u_0 = 2\Re \rho \frac{r^2}{4} + c_2(x). \tag{25}$$

Finally, using the no-slip condition at the wall of the pipe, we can determine the function $c_2(x)$, and we obtain

$$u_0 = \frac{2\Re \rho}{4} \left( r^2 - h^2(x) \right). \tag{26}$$

In order to determine the pressure $p_0$, we need to use (22), by substituting $u_0$, we find the following expression for the pressure gradient $p_0$:

$$p_0 = -\frac{2\Re}{h(x)^2}. \tag{27}$$

Consequently, $u_0$ takes the form

$$u_0(x,r) = \frac{1}{2h(x)^2} \left( h(x)^2 - r^2 \right). \tag{28}$$

Finally, from (23c), we can determine the radial velocity component $v_0$. First from (28) we derive

$$u_0(x) = \frac{2r^2 - h(x)^2}{h(x)^4} h'(x). \tag{29}$$

Substituting this expression in (23c), integrating w.r.t. $r$ and using the no-slip condition we get

$$v_0 = \frac{r \left( h(x)^2 - r^2 \right) h'(x)}{2h(x)^5} = \frac{r h'(x)}{h(x)} u_0(r,x). \tag{30}$$

Summarizing, the 0th order terms of the asymptotic expansion are

$$u_0(x,r) = \frac{1}{2h(x)^2} \left( h(x)^2 - r^2 \right), \quad v_0(x,r) = \frac{h'(x)}{2h(x)^3} \left( h(x)^2 - r^2 \right), \quad p_0(x,r) = -\frac{2}{\Re} \int_0^r \frac{1}{h(\xi)^2} d\xi. \tag{31}$$

This particular expression for $p_0$ considers setting a reference pressure $p_0(0,0) = 0$. These expressions can be rewritten in terms of the original variables $U,V$ and $P$, as follows

$$U(X,R) = 2\Re \frac{\hat{R}(0)^2}{R(X)^2} \left( 1 - \frac{R^2}{R(X)^2} \right), \tag{32a}$$

$$V(X,R) = \frac{\hat{R}'(X)}{\hat{R}(X)} RU(R,X), \tag{32b}$$

$$P(X,R) = -\frac{16\Re \hat{R}^2(0)^3}{\rho} \int_0^{X} \frac{1}{R(\xi)^4} d\xi. \tag{32c}$$

### 3.3 Estimation of the Friction Factor

In this section we consider two different ways of using the asymptotic solution derived above, in order to find the pressure drop. Naturally the first idea that comes in mind is to directly use expression (32c) and evaluate it at $X = 0$ and $X = L$, thus finding the correspondent pressure drop. The other possibility we consider, is to use the leading terms of the asymptotic expansion (32) for computing the integrals in (11). The second option is able to extend the region of applicability of the method as it will be shown later. Now we proceed to obtain the two approximations.

Following the first idea, using that $p_0$ is constant over cross sections, and evaluating (32c), the total pressure loss becomes

$$\Delta P = \frac{16\Re \hat{R}^2(0)^3}{\rho} \int_0^{L} \frac{1}{R^4(X)} dX. \tag{33}$$

The Darcy friction factor can be obtained by solving for $f$ in (4), this yields

$$f = \frac{64 \Re \hat{R}(0)^4}{L \int_0^{L} \frac{1}{R(\xi)^4} d\xi}, \tag{34}$$

where CF1 can be interpreted as a correction factor, which when multiplied with the friction factor for laminar flow in straight pipes $64/\Re$, gives us an approximation to the friction factor of an arbitrarily shaped axially symmetric periodic pipe, described by the function $\hat{R}(X)$. Moreover, since this approximation requires only the calculation of a one dimensional integral, we get a huge reduction in computation time, changing from the order of $10^2$ seconds, for CFD type methods, to the order of $6 \times 10^{-3}$ seconds.

In order to analyze how this method performs, we compare our results to those obtained with the CFD methodology described in Section 4. For the simulations we consider a sinusoidal pipe depicted as in Figure 4. In Figure 2 we show the
tion factor (34), turns out to be independent of \( L \), which matches the simulations with \( L \gg 1 \). In order to alleviate this problem, we now proceed with our second alternative.

Instead of using the asymptotic solution directly, we can substitute (32) into the integral expression for the pressure drop (11), and perform the correspondent integrations. First we derive the pressure loss due to pressure forces on the wall \( \Delta P_f \). Using the expressions for the normal vector (2a) and the surface element (2b), we obtain

\[
\Delta P_f := \frac{1}{|\Gamma_{in}|} \int_{\Gamma} P_n(x) dS = \frac{32 \rho U_0^2 \tilde{R}(0)}{Re} \int_0^L \left( \int_0^X \frac{1}{\tilde{R}(\xi)^4} d\xi \right) \tilde{R}(X) \tilde{R}'(X) dX. \tag{35}
\]

Changing the order of integration we get

\[
\Delta P_f = \frac{16 \rho U_0^2 \tilde{R}(0)}{Re} \left[ \tilde{R}(L)^2 \int_0^L \frac{1}{\tilde{R}(X)^4} dX - \int_0^L \frac{1}{\tilde{R}(X)^2} dX \right]. \tag{36}
\]

In the same way, using (32) and (2a), we can obtain the pressure loss due to skin friction. First we compute

\[
\frac{\partial U}{\partial \rho} = -4 C_D \tilde{R}(0)^2 \frac{R}{\tilde{R}(X)^2}, \quad \frac{\partial U}{\partial X} = 4 \tilde{U}_0 \tilde{R}(0)^2 \frac{\tilde{R}'(X)}{\tilde{R}(X)^3} \left[ 2 \frac{R^2}{\tilde{R}(X)^2} - 1 \right]. \tag{37}
\]

Then we can evaluate \( \nabla U \cdot n \) at the wall \( \Gamma \) and get

\[
\Delta P_s := -\frac{\mu}{|\Gamma_{in}|} \int_{\Gamma} \frac{\partial U}{\partial n} dS = 8 \mu \tilde{U}_0 \int_0^L \frac{1}{\tilde{R}(X)^2} \left[ 1 + (\tilde{R}'(X))^2 \right] dX. \tag{38}
\]

Adding the pressure loss due to forces on the wall (36) with the pressure loss due to skin friction (38), we get the following approximation for the total pressure loss

\[
\Delta P = \frac{16 \rho U_0^2 \tilde{R}(0)}{Re} \left[ \tilde{R}(L)^2 \int_0^L \frac{1}{\tilde{R}(X)^4} dX - \int_0^L \frac{1}{\tilde{R}(X)^2} dX \right] + 8 \mu \tilde{U}_0 \int_0^L \frac{1}{\tilde{R}(X)^2} \left[ 1 + (\tilde{R}'(X))^2 \right] dX. \tag{39}
\]

Grouping terms and using \( \rho D_C_0 / \mu Re = 1 \), we finally get

\[
\Delta P = \frac{16 \rho U_0^2 \tilde{R}(0)}{Re} \int_0^L \frac{\tilde{R}(X)^2}{\tilde{R}(X)^4} + \frac{\tilde{R}(0)^2}{\tilde{R}(X)^2} dX. \tag{40}
\]
which in terms of a friction factor yields

\[
f = \frac{64}{\text{Re}} \frac{\tilde{R}(0)^2}{L} \int_0^L \frac{\tilde{R}'(X)^2}{\tilde{R}(X)^2} + \frac{\tilde{R}(0)^2}{\tilde{R}(X)^4} \, dX. \tag{41}
\]

This gives us an alternative expression for approximating the friction factor, which has basically the same computational cost as (34), but that in contrast with it, is no longer independent of \( L \). In Figure 3 we can observe the performance of our new approximation. The estimations obtained with (41) are displayed in dotted lines, and the results obtained with CFD in solid lines, the line corresponding to \( 64/\text{Re} \) is displayed for reference. As it can be observed from the figure, the new approximation (41) is able to follow the behavior of the friction factor for different values of \( L \). The natural question is to know more precisely how accurate this estimation works, and in which cases the method is applicable.

4 VALIDATION OF THE METHOD

Above it was shown that (41) provides better approximations than (34). In order to analyze the accuracy of our method for estimating the friction factor, we compare the results obtained using (41), with the results obtained with CFD computations. To this extend we consider pipes with sinusoidal walls depicted as in Figure 4, where \( a \) and \( L \) are the amplitude and period of the sinusoidal function, respectively. The geometry is chosen in such a way that the radius is 1 at the inlet. The radius can be written as

\[
\tilde{R}(X) = 1 + \frac{a}{2} \left( 1 + \sin \left( \frac{2\pi}{L} X - \frac{\pi}{2} \right) \right), \tag{42}
\]

which translates into

\[
h(X) = \frac{1}{2} + \frac{a}{4} \left( 1 + \sin \left( \frac{\pi X}{a} - \frac{\pi}{2} \right) \right). \tag{43}
\]

4.1 CFD Methodology

The computation domain can be reduced to just one period, when the flow is fully developed, due to the following argument. Since the geometry under consideration is periodic, it is plausible to assume that all velocity components are periodic as well. The pressure can be split as follows

\[
P(X, R) = \tilde{P}(X, R) + fX, \tag{44}
\]

where \( \tilde{P}(X, R) \) represents the fluctuations due to the presence of the corrugation, and \( f \) is the Darcy friction factor. This transformation is also used in the papers by van der Linden, et.al. [9], and Pisarenco, et.al. [8].

The main advantage of this reformulation is that \( \tilde{P} \) is also periodic, thus allowing to reduce the domain to just one period.
The implementation works as follows, first we prescribe a pressure gradient (friction factor) \( f \), which is included as a force term in the Navier-Stokes equations, with variables \( U, V \) and \( \bar{P} \). We notice that we solve for the pressure fluctuation \( \tilde{P} \), instead of for the original pressure \( P \). This is valid, because the Navier-Stokes equations only involve the gradient of the pressure.

In other words, we first prescribe a friction factor \( f \), second we solve the periodic Navier-Stokes equations, then we compute the average velocity \( \bar{U}_0 \), by integrating the axial velocity component \( U \) over the inlet of the pipe, and finally we compute the resulting Reynolds number \( \text{Re} \) according to \( \text{Re} = \bar{U}_0 a / v \). The Navier-Stokes equations are solved with a finite element software (Comsol Multiphysics [14]).

In Figure 5 we show the fluctuation of the pressure \( \tilde{P} \), and the velocity streamlines obtained for a sinusoidal pipe with amplitude \( a = 1 \) and period \( L = 10 \). Due to axial symmetry, it is enough to solve just one of the symmetric sides of the pipe. The center line is located at \( R = 0 \), the wall of the pipe appears on the right side of the picture, and the flow direction is upwards. For the small Reynolds number \( \text{Re} = 57.6 \), one can observe, signaled by an arrow, the onset of a small vortex close to the deepest part of the protrusion. In this case, our approximation to the friction factor delivers a relative error of 10%. For \( \text{Re} = 187.8 \) we can observe a vortex completely filling the protrusion of the pipe, but the center of the vortex coincides with the center of the corrugation and our approximation delivers a relative error of about 20%. For higher Reynolds numbers, \( \text{Re} = 625.8, 943.5 \), the center of the vortex shifts towards the upper part, and then formula (41) losses precision, yielding 30% relative error for the case in Figure 5(c), and 40% relative error for the case in Figure 5(d). For the pressure fluctuations, we can observe that, for moderate Reynolds number, the pressure is constant over the cross sections, and it starts to vary over the cross section \( X = 8.5 \) at \( \text{Re} = 943.5 \) Figure 5(d). The method provides good approximations provided that the flow stays laminar, and the size of the vortices are small, or are centered around the middle point in the axial direction, in this particular case \( X = 5 \).

### 4.2 Applicability of the method

In order to investigate the accuracy and range of applicability of our approximation to the friction factor (41) systematically, we considered the case of sinusoidal pipes, and varied the geometry parameters, ranging from 0 to 2 for the amplitude of the pipe \( a \), from 0 to 80 for the period of the pipe \( L \), where the geometry had been previously rescaled for having a reference radius at the inlet of \( R(0) = 1 \). Then we compared these estimations to the results obtained using the CFD approach, as described above, and computed the respective relative error \( Err \) as

\[
Err := \frac{|f - \tilde{f}|}{|f|},
\]

with \( f \) being the friction factor obtained from the steady numerical solver, and \( \tilde{f} \) our estimation to the friction factor calculated from (41).

The results from these test are shown in Figure (6). The regions in the parameter space, were the method delivers approximations with relative errors \( Err = 1\% \), \( Err = 10\% \), and \( Err = 20\% \) are presented as isosurfaces. The zones below each
of the isosurfaces, constitute a region where our approximation yields a relative error smaller than the corresponding error of the isosurface. For instance, if the period of the pipe is $L = 80$, and the Reynolds number $Re = 50$, our approximation yield and error smaller than $Err = 1\%$, for any amplitude $0 \leq a \leq 1$.

In order to give a more clear impression of the regions of accuracy of the method, we show cross sections of the error for some fixed values of the amplitude $a$, as function of $Re$ and $L$. The results are displayed in terms of contour lines of the error. Figure 7 shows the results for the case $a = 0.2$. Some remarkable property, is the fact that the maximum error in the whole region is only $8\%$. Of course this accuracy can not be attained for all parameter values. When one increases the size of the amplitude, the accuracy of the method decreases, for instance when $a = 0.5143$, Figure 8, there are still some regions where the accuracy is of the order of $5\%$, but in other regions the error increases up to $25\%$. For the case $a = 1$, Figure 9, the region of $5\%$ accuracy is reduced, and some zones with error of up to $30\%$ appear.

5 CONCLUSIONS

Based on asymptotic solutions obtained from the method of slow variations, and on an integral expression for the friction factor, in this paper we derived approximate expressions for the friction factor in axially symmetric pipes. Estimating the friction factor with these expressions, requires only numerical integration in one dimension, and consequently the method is extremely efficient.

From the validation with sinusoidal pipes, we can conclude that our method yields an error smaller than $10\%$, for amplitude values up to $a = 0.2$. For larger amplitudes, we additionally require, roughly speaking, either a small Reynolds number $Re$, or a large value of $L$, for keeping the error below $10\%$. The maximum error in the range of parameters investigated here, is about $25\%$, and $30\%$, for amplitudes $a = 0.5143$, and $a = 1$, respectively.

ACKNOWLEDGMENT

This work is part of a project in collaboration with Stork FDO Inoteq and it is funded by Ballast Nedam IPM.

REFERENCES


Copyright © 2010 by ASME


### PREVIOUS PUBLICATIONS IN THIS SERIES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-21</td>
<td>M. Pisarenco, J.M.L. Maubach, I. Setija, R.M.M. Mattheij</td>
<td>The Fourier modal method for aperiodic structures</td>
<td>March ‘10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI</td>
<td>Apr. ‘10</td>
</tr>
<tr>
<td>10-23</td>
<td>R. Choksi, M.A. Peletier</td>
<td>From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage</td>
<td>Apr. ‘10</td>
</tr>
</tbody>
</table>