Dynamical instability of a rotating dipolar Bose-Einstein condensate

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.98.150401

DOI:
10.1103/PhysRevLett.98.150401

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dynamical Instability of a Rotating Dipolar Bose-Einstein Condensate

R. M. W. van Bijnen,1,2 D. H. J. O’Dell,3,4 N. G. Parker,1 and A. M. Martin1

1School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
2Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3Centre for Cold Matter, Imperial College, Prince Consort Road, London, SW7 2BW, United Kingdom
4Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
(Received 27 February 2006; published 9 April 2007)

We analyze the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar interactions in a rotating, elliptical harmonic trap. The static solutions and their regimes of dynamical instability vary nontrivially with the strength of the dipolar interactions. We comprehensively map out this behavior, and, in particular, examine the experimental routes toward unstable dynamics, which, in analogy to conventional condensates, may lead to vortex lattice formation.

In recent years a considerable amount of experimental [1,2] and theoretical [3–7] work has been carried out on dilute Bose-Einstein condensates (BECs) in rotating anisotropic traps. Where short-range interactions dominate, a vortex lattice forms when the rotational frequency (Ω) about the z axis is 0.7ω∥, where ω∥ is the trapping frequency perpendicular to the axis of rotation. Insight into the mechanism of vortex lattice formation can be gained by noting that 0.7ω∥ closely coincides with the frequency at which certain hydrodynamic surface excitations become unstable [4,5]. Through comparison with experimental results [1,2] and numerical solutions of the Gross-Pitaevskii equation (GPE) [5–7] such instability has been directly related to vortex lattice formation.

The above results apply to conventional BECs composed of atoms of mass m with short-range s-wave interactions, parametrized via g = 4πℏ2a/m, where a is the s-wave scattering length. However, a recent experiment has formed a BEC of chromium atoms with dipolar interactions [8]. Chromium has an anomalously large magnetic dipole moment of 6 bohr magnetons which leads to magnetic dipole-dipole interactions that are 36 times stronger than those found in most alkali-metal atoms. Theoretical work, using a modified GPE, has studied the effect of such long-range interactions on the ground state vortex lattice solutions [9]. However, the route to generating such states has not been explored. For this purpose we solve the hydrodynamic equations of motion for a dipolar BEC in a rotating anisotropic harmonic trap. We show that the solutions depend on both the strength of the dipolar interactions and the aspect ratio of the trap γ = ωz/ω∥, in stark contrast to conventional BECs where they are independent of both the strength of the interactions and γ [3,4]. We evaluate the dynamical stability of our solutions, showing that the region of Ω for which the solutions are stable can be controlled via both ϵdd and γ.

Consider a BEC with long-range dipole-dipole interactions. The potential between dipoles, separated by r and aligned by an external electric or magnetic field along a unit vector ẑ, is given by [10]

\[U_{dd}(r) = \frac{C_{dd}}{4\pi} \hat{z} \cdot \hat{r} \left(\delta_{ij} - 3 \hat{r}_i \hat{r}_j \right) \frac{1}{r^3}. \]

For two atoms with dipoles induced by a static electric field \(E = E\hat{z} \), the coupling constant \(C_{dd} = E^2r_0^2/\epsilon_0 \) [11,12]. Alternatively, if the atoms have permanent magnetic dipoles \(d_m \) aligned in an external magnetic field \(B = B\hat{z} \), one has \(C_{dd} = \mu_0d_m \) [13]. Denoting ρ as the condensate density, the dipolar interactions give rise to a mean-field potential

\[\Phi_{dd}(r) = \int d^3r' U_{dd}(r - r')\rho(r'), \]

which can be included in a generalized GPE [12–14] for the BEC. In the Thomas-Fermi (TF) regime [15] the GPE describing a static dipolar BEC in a harmonic trapping potential \(V(r) = m(\omega_x^2x^2 + \omega_y^2y^2 + \omega_z^2z^2)/2 \) is

\[\mu = \frac{m}{2}(\omega_x^2x^2 + \omega_y^2y^2 + \omega_z^2z^2) + g\rho + \Phi_{dd}(r), \]

where \(\mu \) is the chemical potential. For ease of calculation the dipolar potential \(\Phi_{dd}(r) \) can be expressed in terms of a fictitious “electrostatic” potential \(\phi(r) \) [16]

\[\Phi_{dd}(r) = -3ge_{dd}\hat{e}_d\hat{e}_d \left(\nabla_i \nabla_j \phi(r) + \delta_{ij} \frac{3}{\rho(r)} \right). \]

where \(\phi(r) = \int d^3r'\rho(r')/(4\pi|r - r'|) \) and

\[e_{dd} = C_{dd}/3g \]

parametrizes the relative strength of the dipolar and s-wave interactions. Self-consistent solutions of Eq. (3) for \(\rho(r) \), \(\phi(r) \), and hence \(\Phi_{dd}(r) \) can be found for any general parabolic trap; see Appendix A of Ref. [16].

Consider atoms in a harmonic potential rotating at a frequency \(\Omega \) about the z axis. In the mean-field approximation the evolution of the condensate field \(\psi(r,t) \) is described by the time-dependent GPE. Writing the condensate field in terms of density \(\rho(r,t) \) and phase \(S(r,t) \)

\[\psi(r,t) = \rho(r,t)e^{iS(r,t)} \]
and neglecting the quantum pressure, we obtain the superfluid hydrodynamic equations

\[\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho (\mathbf{v} - \mathbf{\Omega} \times \mathbf{r})] = 0, \]

\[\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \left(\frac{\rho}{m} \mathbf{v} + \mathbf{g} + \mathbf{\phi}_{dd} - \mathbf{v} \cdot (\mathbf{\Omega} \times \mathbf{r}) \right) = 0, \]

where \(\mathbf{v} = (h/2) \nabla S \) is the fluid velocity field in the laboratory frame, expressed in the coordinates in the rotating frame. Setting \(\partial \rho / \partial t = \partial \mathbf{v} / \partial t = 0 \) we look for stationary solutions with an irrotational velocity field of the form \[(3,4) \]

\[\mathbf{v} = \alpha (\hat{y} + x \hat{j}), \]

where \(\alpha \), the amplitude of the velocity field, is to be determined. Then, Eq. (7) leads to

\[\mu = \frac{m}{2} (\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 + \rho g(z, \mathbf{\phi}_{dd}(z))) \]

where \(\omega_x^2 = \omega_0^2 + \alpha^2 - 2 \alpha \Omega \) and \(\omega_y^2 = \omega_0^2 + \alpha^2 + 2 \alpha \Omega \) are effective trap frequencies. The form of Eq. (9) is identical to Eq. (3). Hence we can use the methodology presented in Ref. [16] to calculate \(\Phi_{dd}(z) \). An exact solution of Eq. (9) is given by

\[\rho = n_0 \left[1 - \frac{x^2}{R_x^2} - \frac{y^2}{R_y^2} - \frac{z^2}{R_z^2} \right] \]

for \(\rho \geq 0 \),

\[\frac{\Phi_{dd}}{3 \varepsilon_0} = -\frac{n_0 \kappa_x \kappa_y}{2} \left[\beta_0 - \frac{x^2 \beta_x + y^2 \beta_y + 3 z^2 \beta_z}{R_z^2} \right] - \frac{\rho}{3}, \]

where

\[\beta_k = \int_0^\infty \frac{d\sigma}{(1 + \sigma)(\kappa^2 + \sigma)\sqrt{(\kappa_x^2 + \sigma)(\kappa_y^2 + \sigma)(1 + \sigma)}}, \]

\[\beta_0 = \int_0^\infty \frac{d\sigma}{(1 + \sigma)(\sqrt{(\kappa_x^2 + \sigma)(\kappa_y^2 + \sigma)(1 + \sigma)}).} \]

Thus we can rearrange Eq. (9) to obtain the density

\[\rho = \frac{\mu - \frac{m}{2} \varepsilon_0 n_0 \kappa_x \kappa_y \beta_0 - x^2 \omega_x^2 + y^2 \omega_y^2 + z^2 \omega_z^2}{g(1 - \varepsilon_0)}, \]

where \(\omega_{x(y)} = \omega_x^2 - \varepsilon_{dd} \kappa_x \kappa_y \beta_{x(y)} \omega_x^2/(2 \xi), \) \(\omega_z = \omega_0^2 (1 - \varepsilon_{dd} \kappa_x \kappa_y \beta_z)/(2 \xi), \) and \(\xi = 1 - \varepsilon_{dd}(1 - [(9 \kappa_x \kappa_y)/(2 \beta_z)]). \) Comparing the \(x^2, y^2, \) and \(z^2 \) terms in Eqs. (10) and (14) we find the three self-consistency relations:

\[\kappa_x^2 = \left(\frac{\omega_z^2}{\omega_x^2} \right)^2 + \frac{2 \varepsilon_{dd}}{3} \kappa_x^3 \kappa_y^3 \kappa_z^3 \beta_{x(y)} - 1 \]

\[(= 0, \quad \omega_x^2 + \omega_y^2 + \omega_z^2) \]

\[R_x^2 = (2 g n_0 / m \omega_x^2) \xi. \]

Using Eq. (14) we find the following stationary solutions to Eq. (6):

\[0 = (\alpha + \Omega) \left(\omega_x^2 - \frac{3}{2} \varepsilon_{dd} \omega_0^2 \kappa_x \kappa_y \beta_x \right) \]

\[+ (\alpha - \Omega) \left(\omega_z^2 - \frac{3}{2} \varepsilon_{dd} \omega_0^2 \kappa_x \kappa_y \beta_z \right). \]

In the limit \(\varepsilon_{dd} = 0 \) the solutions of Eq. (16) are independent of \(g \) and \(\gamma \). However, for \(\varepsilon_{dd} \neq 0 \) the solutions to Eq. (16) are dependent on both \(\varepsilon_{dd} \) and \(\gamma \).

Introducing the parameter \(\varepsilon = (\omega_x^2 - \omega_y^2)/(\omega_x^2 + \omega_y^2) \) to define the anisotropy of the trap, we examine Eqs. (15) and (16) self-consistently to determine the static hydrodynamical solutions, in the rotating frame. Figure 1(a) shows the solutions to Eq. (16) for various values of \(\varepsilon_{dd} \) with \(\gamma = 1 \) and \(\epsilon = 0 \). For \(\varepsilon_{dd} = 0 \) (solid curve) we find a bifurcation point at \(\Omega_b = \omega_0 \sqrt{2} [3,4] \) which exactly coincides with the vanishing of the energy of the quadrupole mode in the rotating frame. For \(\Omega < \Omega_b \), one solution, corresponding to \(\alpha = 0 \), is found. For \(\Omega > \Omega_b \), three solutions appear, \(\alpha = 0 \) and \(\alpha = \pm \sqrt{2 \Omega^2 - \omega_x^2} \omega_x \) [3]. The two additional solutions are a consequence of the quadrupole mode being excited for \(\Omega \geq \omega_x \sqrt{2} \). It is a remarkable feature of the pure s-wave case that these solutions do not depend upon \(g \). This is because in the TF limit surface excitations with angular momentum \(\ell \ell l = h q l R \), where \(R \) is the TF radius and \(q l \) is the quantized wave number, obey the classical dispersion relation \(\omega_0 = (q l / m) \bar{V} \) involving the local harmonic potential \(\bar{V} = m \omega_x^2 R^2 / 2 \) evaluated at \(R \) [17]. Consequently \(\omega_0 = \sqrt[3]{\omega_x} \), which is independent of \(g \). However, in the case of long-range dipolar interactions the potential \(\Phi_{dd} \) of Eq. (4) gives

FIG. 1. (a) Irrotational fluid velocity amplitude \(\alpha \) as a function of the trap rotational frequency \(\Omega \), as obtained from Eq. (16), for \(\gamma = 1, \epsilon = 0, \) and \(\varepsilon_{dd} = 0 \) (solid curve), \(\varepsilon_{dd} = 0.25 \) (short dashed curve), \(\varepsilon_{dd} = 0.5 \) (long dashed curve), \(\varepsilon_{dd} = 0.75 \) (dash-dotted curve), and \(\varepsilon_{dd} = 0.99 \) (dotted curve). (b) Bifurcation point \(\Omega_b \) versus \(\gamma \) for different dipolar interactions strengths; \(\varepsilon_{dd} \) increases, in the direction of the arrow, from 0 in steps of 0.1, with the lowest curve being for \(\varepsilon_{dd} = 0.99 \).
nonlocal contributions, breaking the simple dependence of the force $-\nabla V$ upon R [10]. Thus, we expect the resonant condition for exciting the quadrupolar mode, i.e., $\Omega_b = \omega_i/l$ (with $l = 2$), to change with ϵ_{dd}. In Fig. 1(a) we see that this is the case: as dipole interactions are introduced, our solutions change and the bifurcation point (Ω_b) moves to lower frequencies.

In contrast to the s-wave case, the shape of the BEC determines the potential Φ_{dd}. For an oblate ($\kappa_{x,y} > 1$) BEC, more dipoles lie side-by-side, giving a net repulsive interaction, in comparison to the prolate ($\kappa_{x,y} < 1$) case where a majority sit end-to-end, inducing a net attractive interaction. In the limits of $\kappa_{x,y} \to 0$ and $\kappa_{x,y} \to \infty$ the angular dependence of the interactions plays no role and the gas behaves conventionally, but in the intermediate regime the role of $\kappa_{x,y}$, and hence the trap aspect ratio, is important. In Fig. 1(b) we plot Ω_b as a function of γ for various values of ϵ_{dd}. For $\epsilon_{dd} = 0$ we find that the bifurcation point remains unaltered at $\Omega_b = \omega_x/\sqrt{2}$ as $\gamma = \omega_z/\omega_x$ is changed [3,4]. As ϵ_{dd} is increased the value of γ for which Ω_b is a minimum changes from a trap shape which is oblate ($\gamma > 1$) to prolate ($\gamma < 1$).

Consider now the effect of finite trap anisotropies ($\epsilon > 0$). In Fig. 2(a) we have plotted the solutions to Eq. (16) for various values of ϵ_{dd} with $\gamma = 1$ and $\epsilon = 0.02$. As in the case without dipolar interactions [3,4] the solution $\alpha = 0$ is no longer a solution for all Ω. The effect of introducing the anisotropy, in the absence of dipolar interactions, is to increase the bifurcation frequency Ω_b. Turning on the dipolar interactions, as in the case of $\epsilon = 0$, reduces the bifurcation frequency.

We now analyze two procedures for generating an instability by tracing different paths on Fig. 2(a). Both procedures lead to hydrodynamic instabilities which in conventional BECs have been experimentally [1,2] and theoretically [5–7] linked to vortices entering the BEC and the eventual formation of a vortex lattice. However, the nature of the instability is different in the two cases.

Procedure I.—Ω is fixed at $\Omega > \Omega_b(\epsilon = 0)$ and the trap anisotropy is adiabatically turned on. As for conventional BECs [3,5,6], as ϵ is increased adiabatically, from zero, the $\alpha = 0$ solution moves to negative values of α and the BEC follows this route. However, as ϵ is increased further, the edge of the lower branch $\Omega_b(\epsilon)$ shifts to higher frequencies. At some critical value of ϵ, $\Omega_b(\epsilon) = \Omega_b$, the lower branch ceases to be a solution for this value of Ω. As the dipole interactions are increased the bifurcation frequency is reduced and the range of Ω for which this type of instability can occur decreases from $[\omega_x/\sqrt{2}, \omega_z]$ to $[0.5\omega_x, \omega_x]$. In addition, dipolar interactions increase the value of ϵ for which lower branch solutions exist.

Procedure II.—ϵ is fixed and Ω is introduced adiabatically, such that the BEC follows the upper branch solutions ($\alpha > 0$) of Eq. (16). Although these are static solutions they are not necessarily dynamically stable. Below we generalize the analysis of Ref. [4] to examine the dynamical stability of the solutions to Eq. (16).

Consider small perturbations in the BEC density and phase of the form $\rho = \rho_0 + \delta \rho$ and $S = S_0 + \delta S$ then, via Eqs. (6) and (7), the dynamics of such perturbations can be described, to first order, as

$$\frac{\partial}{\partial t} \frac{\delta S}{\delta \rho} = -\left[\frac{\nabla \cdot \nabla}{\nabla \cdot \rho_0 \nabla} \left[(\nabla \cdot \nabla) + \frac{\epsilon_{dd} K}{\nabla \cdot \rho_0 \nabla} \right] \frac{\delta S}{\delta \rho} \right],$$

(17)

where $K = -3(\partial^2/\partial z^2) \int dx dy dz/(4\pi r^4 - r^4) - 1$ and $\nabla_z = \nabla_0 \times \nabla$. As in Ref. [4] we consider a polynomial ansatz, of order n in the coordinates x, y, z, and evaluate the evolution operator for the perturbations. If one or more of the eigenvalues λ has a positive real component the stationary solution is dynamically unstable. However, imaginary eigenvalues correspond to stable oscillatory modes of the system [18]. Below we consider both the stable and unstable modes of the upper branch static solutions for $\gamma = 1$ and $\epsilon = 0.02$.

Initially we consider the positive imaginary eigenvalues of Eq. (17), associated with stable oscillatory modes of the dipolar BEC. As expected we find three modes associated with center of mass oscillations. For $\Omega = 0$ the frequencies of these modes are $\text{Im}(\lambda) = \omega_x = \omega_y$ and ω_y. Under rotation the motion in x and y is coupled and so the frequencies of the two center of mass modes in the x-y plane are shifted [17], while center of mass motion in the z direction is unaffected by rotation. These modes are independent of the strength of the dipolar interactions since they do not alter the shape of the BEC. Higher frequency modes are associated with the breathing modes of the system [18]. Since these modes do alter the shape of the BEC, and thus the dipolar mean-field potential $\Phi_{dd}(\varphi)$, we find that they are dependent upon ϵ_{dd}. However, for $\Omega = 0$, the bulk breathing mode at $\text{Im}(\lambda) = \omega_x \sqrt{5}$ [18] is associated with a perturbation in x, y, and z which is equivalent to a uniform rescaling of the density and as such the frequency of this mode is almost independent of ϵ_{dd}.
Finally, we consider the real positive eigenvalues of Eq. (17), associated with regions of instability for the upper branch static solutions. In the limit of $\varepsilon_{dd} = 0$ we reproduce Fig. 2 of Ref. [4], with the solutions being unstable in the range $[0.78 \omega_x, \omega_x]$ for $\varepsilon = 0.02$. In Fig. 2(b) we have plotted the real positive eigenvalues, $\text{Re}(\lambda)$, of Eq. (17), as a function of Ω for various values of ε_{dd} with $n = 3$. For higher values of ε_{dd} (0.95 and 0.98 in Fig. 2(b)) there can be more than one real positive eigenvalue, thus we define the region of instability as the range over which $\max_{\varepsilon, \omega_x} \text{Re}(\lambda) > 0$, as shown by the solid curves in Fig. 2(b) [19]. As the dipolar interaction strength is increased the lower bound in Ω for the unstable region is reduced. For example, for $\varepsilon_{dd} = 0.6$ the range of rotation frequencies where the upper branch solution is unstable is $[0.75 \omega_x, \omega_x]$, this increases to $[0.67 \omega_x, \omega_x]$ for $\varepsilon_{dd} = 0.98$.

By calculating the static hydrodynamic solutions of a rotating dipolar BEC and studying their dynamical stability, we have predicted the regimes of instability of the rotating dipolar BEC and studying their dynamical stability. Thus, for Procedure I dipolar interactions increase the hydrodynamic regime is susceptible to local density perturbations which can lead to collapse [16].

We thank S. Sinha and Y. Castin for helpful discussions and acknowledge funding from the ARC, the EPSRC, the University of Melbourne, and QIP IRC (No. GR/S82176/01).

References:

[15] The limit where the zero-point kinetic energy (quantum pressure) is negligible compared to the potential and interaction energies. In this limit we are restricted to $\varepsilon_{dd} < 1$, since for $\varepsilon_{dd} \geq 1$ the hydrodynamic regime is susceptible to local density perturbations which can lead to collapse [16].

[19] For $n > 3$ we find that, although there are more eigenvalues, the region of instability, defined by $\max_{\varepsilon, \omega_x} \text{Re}(\lambda) > 0$, remains the same.
