Programmable low noise amplifier with active-inductor load

Citation for published version (APA):

DOI:
10.1109/ISCAS.1998.698858

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Mar. 2019
ABSTRACT

A common gate CMOS low noise amplifier (LNA) with an active-inductor load is presented. For large inductance values, an on-chip passive inductor requires considerable silicon area and it is quality-factor (Q) limited, a situation that can be rendered impractical. Hence, the purpose of this work is to seek the possibility of using active inductors in RF circuits as substitutes for passive ones. Moreover, an active inductor opens avenues for programmability, e.g. it is possible to attain an amplifier with a programmable center frequency. It is shown in this paper that by proper design optimization the active-inductor’s noise contribution can be minimized. HSPICE simulations using 0.5μm HP technology show that our amplifier has a tuning range of half decade for a center frequency at 1GHz. The simulated gain, noise figure, and power consumption are 20dB, 3.65dB, and 14mW, respectively.

I. INTRODUCTION

Motivated by the growing market of RF communications systems, much effort has been devoted to the implementation of RF components in a CMOS technology. The low noise amplifier (LNA) is the most demanding block in an RF system in terms of noise-figure and linearity. Inductors are fundamental for the design of low noise amplifiers. Most of the published LNAs[1,2,3] are implemented by using on-chip spirals. These inductors consume too much area and are quality factor limited. Nevertheless, by applying techniques such as the ones proposed in [4,5], it is possible to compensate the quality factor of these inductors. Recently, an active inductor[6,7] which can operate close to the transistors’ frequency response was proposed. However, in LNA designs, the problem associated with active inductors is not primarily the frequency response but the additional noise introduced by its active components. In this paper, we carry out a thorough noise analysis of a common-gate LNA using an active-inductor load. We demonstrate how through careful design optimization the LNA’s noise figure is minimized and finally we present simulation results to substantiate our findings.

II. OVERVIEW OF LNA DESIGN

Conventional design objectives for LNAs are to minimize the amplifier’s noise figure, to provide reasonable gain with good linearity at RF frequency, and to provide good input matching to the antenna or to the RF filter. LNAs can be classified into common gate[1] or cascaded common source[2,7] architectures. To achieve high gain at RF, a large inductor load with high quality factor is desired. This also helps to reject out-of-band signals and noise. However, silicon-based on-chip spiral inductors cannot meet the above requirement due to the associated parasitic capacitance and resistance losses that arise from the substrate and metal lines. Large inductance values can only be fabricated by removing the inductor’s underlying silicon substrate. This introduces additional processing steps and reliability problems. Furthermore, these on chip inductors occupy a large silicon area and are not tunable. For instance, the estimated physical size of a 40nH inductor using Greenhouse’s formula[8] is more than 0.06mm². The area of such inductor is obviously excessive. Thus, an active inductor that can be implemented with a reasonable physical size seems a good alternative for its passive equivalent.

III. DESIGN OF ACTIVE INDUCTOR

An often used way for making active inductors is through the combination of a gyrator and a capacitor. Proposed circuits[8] such as the ones depicted in Fig. 1 exploit the parasitics within the devices. Those active inductors can operate in the GHz range.

![Fig 1. Active inductor using gate parasitic capacitor of M2](a) cascode (b) regulated cascode)

To reduce the inductor loss in the circuits of Fig. 1 it is necessary to decrease the output conductance at node V2 either by using cascading or regulated cascading techniques[9]. Simultaneously, the integration zero is pushed further to a lower frequency, thereby increasing the frequency range of the inductance. With these circuits it is easier to implement a large inductance with less power consumption or less area because of the trade-offs between gm and Cgs.

Based on a first order small signal analysis the equivalent RLC network for this inductor is shown in Fig. 2 where,

\[
L = \frac{C_{g2^2}}{s_m^1 s_{m2}}
\]
\[r_L = \frac{G_{o1}}{G_{m1}G_{m2}} \] (2a)

\[G_{o1} = \frac{G_{ds1}G_{ds3}}{G_{m3}} \quad \text{for Fig. 1(a)} \] (2b)

\[G_{o1} = \frac{G_{ds1}G_{ds3}G_{ds4}}{G_{m3}G_{m4}} \quad \text{for Fig. 1(b)} \] (2c)

\[C = C_{g1} \] (3)

\[R = \frac{1}{G_{m2}} \] (4)

Integration zero and dominant pole is (5) and (6) respectively.

\[z = \frac{G_{o1}}{C_{g2}} \] (5)

\[p = \frac{G_{m2}}{C_{g2}} \] (6)

The self-resonant frequency for the inductor is

\[\omega_0^2 = \frac{G_{m3}G_{m2}}{C_{g1}C_{g2}} \] (7)

and the Q at self-resonant frequency \(\omega_0 \) can be written as

\[Q_L = \frac{\omega_0 C_{g2}}{G_{o1}} = \frac{G_{m1}G_{m2}C_{g2}}{G_{o1}^2 C_{g1}} \] (8)

\[\text{Fig. 2. Equivalent RLC model of active inductor} \]

The most challenging problem associated with active inductors is their poor noise performance as compared to their passive equivalents. Without loss of generality, the noise of the active inductors shown in Fig. 1 can be calculated as shown in Fig. 3 [9].

\[dv_{gm1} = 4KT \gamma \frac{G_{m1}}{G_{m1}} \cdot df \] (9)

\[dv_{gm2} = 4KT \gamma \frac{G_{m2}}{G_{m2}} \cdot df \] (10)

where \(K \) is the Boltzmann constant, \(T \) is the absolute temperature, \(df \) is the noise bandwidth, and \(\gamma \) is the coefficient of the channel's thermal noise. These noise sources contribute additional noise, which in theory degrades the LNA's performance. However, in Section IV, it will be shown that through careful design, the effects of these noise sources on the LNA can be minimized as well.

\[Q = \frac{1}{\omega R_{eq} C_{out}} = \frac{\omega L}{R_{eq}} \] (11)

IV. ACTIVE INDUCTOR LNA DESIGN

As a vehicle to illustrate the relevance of an active inductor, we chose the common-gate LNA because it requires a large inductor that is often impractical for a passive on-chip implementation. For the analysis consider an LNA with the regulated cascode active-inductor load as depicted in Fig. 4. Inductance \(L_1 \), which can be done off-chip, [1] is tuned to be resonant with the input transistor's \(C_{gs} \). Input impedance matching is done through the input transconductance \(\frac{1}{G_{mn}} \) which can be adjusted by \(V_g \). \(V_p \) is set to make the current flow through \(M_a \) and \(M_P \) be the same allowing us in this way to have individual control over the active inductor. Namely, it allows us to have a constant \(g_{mn} \) and to adjust \(I_1, I_2 \), and \(I_3 \) separately to control the inductor's \(L, 0, \) and \(Q \) values. The inductance value and center frequency can be set by varying \(I_1 \) and \(I_2 \), while the quality factor can be tuned by varying \(I_3 \), independently. Fig. 5 shows the implementation of current sources \(I_1, I_2 \), and \(I_3 \), where \(I_1, I_2, I_3 \) are implemented using P-type high swing cascode current mirrors and \(I_3 \) is implemented using N-type equivalents. Requirements for the output impedance of \(I_1, I_2, I_3 \) are not as demanding as for \(I_1 \) which is best implemented with a regulated cascode current source. Observe that the more complex the current source is, the more poles and zeros it will introduce. This obviously degrades the LNA's high frequency response. In our case, we use a cascode current mirror for \(I_1, I_2 \); and \(I_3 \).

Neglecting the non-idealities of the current sources, the LNA's gain can be written as \(g_{mn}R_{eq} \), where, \(R_{eq} = \frac{r_{dl}}{r_{dp}} = \frac{R}{Q^2} \). Both \(r_{dl} \) and \(r_{dp} \) are the output impedance of \(M_a \) and \(M_P \), respectively. \(R \) and \(r_L \) are shown in Fig. 2 and \(Q \) is defined as

\[Q = \frac{1}{\omega R_{eq} C_{out}} = \frac{\omega L}{R_{eq}} \] (11)

A small-signal analysis reveals that the LNAs noise factor is

\[\text{Noise Factor} = 1 + \gamma + 2\gamma \frac{G_{m1}}{G_{m1}} + 2\gamma + 4\gamma \frac{r_{dp}}{G_{m1}R_{eq}} + 2\gamma \frac{G_{m1}}{G_{m1}} \] (12)

If \(Q \) is sufficiently large, the noise factor can be rewritten as

\[\text{Noise Factor} = 1 + \gamma + 2\gamma \frac{G_{m1}}{G_{m1}} + 2\gamma + 4\gamma \frac{r_{dp}}{G_{m1}R_{eq}} + 2\gamma \frac{G_{m1}}{G_{m1}} \] (13)

It follows then that to minimize the noise factor of the proposed common-gate active-inductor LNA, a large value of \(R_{eq} \) is needed. As \(R \) is normally the dominant term in \(R_{eq} \), the current flow through \(M_a \) should be minimized to obtain a good noise performance. Observe from (1) that to keep constant the desired
inductance value it is possible to decrease g_{m2} by bringing I_2 and
the size of M_2 to a minimum while simultaneously enlarging g_{m1}
by increasing I_1 and the size of M_1. This minimizes the third and
fourth terms of (13). Also, the last term of (13) can be minimized
by biasing M_b at a higher gate-source voltage to achieve a
relatively small transistor size. However, good linearity requires a
large I_2 bias current and a relatively low quality factor. Moreover,
to avoid instability, the high frequency zero should be put beyond
the dominant pole (g_{m2}/c_{ds2}) to avoid the negative resistance.
Therefore, trade-offs between noise figure, linearity and stability
should be taken into account.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4.png}
\caption{Common gate regulated cascode active inductor LNA}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.png}
\caption{Cascode P-type current mirror and N-type current mirror}
\end{figure}

\section*{V. SIMULATION RESULTS}

The proposed circuits were simulated using HSPICE. The
transistor model used is MOSIS Bsim1 for the HP 0.5um CMOS
process. Table 2 shows a summary of design parameters for
several inductance values. One can see that it is easier to obtain
large inductor values through less power consumption.

Table 2. Comparison of power consumption for several
inductor values

<table>
<thead>
<tr>
<th>Inductor</th>
<th>I_1 (\m\AA)</th>
<th>I_2 (\m\AA)</th>
<th>I_3 (\m\AA)</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>20nH</td>
<td>400 \mu A</td>
<td>500 \mu A</td>
<td>100 \mu A</td>
<td>3.3mW</td>
</tr>
<tr>
<td>100nH</td>
<td>40 \mu A</td>
<td>120 \mu A</td>
<td>50 \mu A</td>
<td>0.70mW</td>
</tr>
</tbody>
</table>

Fig. 6 shows the programmability properties of the LNA's
frequency response and noise analysis. The Noise Figure
calculated from this Figure is 3.65dB. The tuning range of the
resonant frequency is nearly half decade at 1GHz by varying I_2.
However, when I_2 varies, the quality factor varies as well which
also causes the gain of the amplifier to vary. This variation can be
compensated by adjusting I_1. The result of this fine tuning is that
we can keep the gain nearly constant when tuning I_2 as shown in
Fig. 6. The actual tuning range of I_2 is 50-300\mu A. Recall that I_1 is
the tuning variable for the quality factor. When decreasing I_1, the
quality factor Q increases, which leads to an increase of the
equivalent parallel resistance $Q'R_L$. However, the gain of this
LNA is kept nearly stable due to the dominant term of the
$R/R_{ds}/R_{dep}$ in R_{eq}. Fig. 7 shows how the noise figure is affected
by I_2. For this plot, I_1 is varied accordingly to keep a constant
inductor value thereby a constant center frequency at 1GHz. The
linearity of the LNA, which is normally evaluated by the input-
referred third-order intercept point (IIP3), is plotted in Fig. 8.
The simulated IIP3 is around -17dBm, however, the 1dB
compression point appears around -34dBm. The LNA's
nominal gain at 1GHz is 20.5 dB, using an inductor of 50nH.
The noise figure is 3.65dB, input matching is 60\Omega @ 1GHz, power
supply is 3.3v and power dissipation is around 14mW.

The frequency response and noise analysis of the LNA with the
cascode active inductor of Fig. 1b is also presented in Fig. 9. The
simulated gain is 15.5dB, noise figure is 3.65dB, input matching
57\Omega @ 1GHz, IIP3 is 0dBm and P_{1db} is -23dBm. As a way of
reference, a comparison between our design using the regulated
cascode active-inductor and other designs reported in the
literature is presented in Table 3.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig6.png}
\caption{Characteristics of programmable LNA for frequency tuning
and noise analysis (regulated cascode active inductor).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig7.png}
\caption{Noise Figure change vs I_2/I_1.}
\end{figure}
Fig 8. IIP3 of LNA (a) regulated cascode active inductor (b) cascode active inductor

Fig 9. Characteristics of programmable LNA for frequency tuning and noise analysis (cascode active inductor).

Table 3. Comparison of LNA designs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (dB)</td>
<td>22</td>
<td>22</td>
<td>15.6</td>
<td>16</td>
<td>20.5</td>
</tr>
<tr>
<td>Freq (Hz)</td>
<td>1G</td>
<td>1.5G</td>
<td>900M</td>
<td>1G</td>
<td>1G</td>
</tr>
<tr>
<td>NF (dB)</td>
<td>3.2</td>
<td>3.5</td>
<td>2.2</td>
<td>2.2</td>
<td>3.65</td>
</tr>
<tr>
<td>Power (mw)</td>
<td>13.2</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>14.0</td>
</tr>
<tr>
<td>Inductor</td>
<td>on chip spiral</td>
<td>on chip spiral</td>
<td>on chip spiral</td>
<td>/ active</td>
<td></td>
</tr>
<tr>
<td>LNA Area</td>
<td>0.26mm²</td>
<td>0.12mm²</td>
<td>0.28mm²</td>
<td>1mm²</td>
<td>0.08mm²</td>
</tr>
</tbody>
</table>

*: fully differential LNA.
*: 7.5 mw from amplifier stage, 22.5 mw from open-drain output.
*: including a fully differential mixer; however, the two on-chip spiral inductors in the LNA dominate the area [1].
*: estimated area.

VI. CONCLUSION

In this paper, we have presented a single-ended LNA with an active inductor load. We showed how an active inductor is a suitable substitute for its passive equivalent in situations where large inductance values are needed. Careful design optimization leads to an amplifier with minimum noise figure and programmable center frequency.

VII. REFERENCES