Ellipsometric Porosimetry for the Microstructure Characterization of Plasma-Deposited SiO2-Like Films

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Dec. 2019
Spectroscopic Ellipsometry I

Moderator: M.S. Wagner, Proctor and Gamble

III-VI compounds generally crystallize in layered-structures characterized by strong covalent interactions within the layers but weak Van der Waals binding between the layers. This unique structural characteristic has made III-VI compounds attractive for their potential applications in nonlinear optics. Among these compounds, in particular, InSe has been considered as a promising candidate for thin film photovoltaic (PV) material owing to its energy bandgap, optical and transport properties. Recently, high-quality epitaxial InSe thin films have been grown on GaSe substrates, and PV device structures containing n-InSe and p-GaSe have been successfully fabricated [1].

In order to design and optimize a high-performance PV device structure, knowledge of optical properties of constituent materials over a wide spectral range is required. However, large discrepancies were found in the properties of GaSe and InSe available in the literature, which have been measured mostly by reflectance methods with the Kramers-Kronig transformation employed to obtain the dielectric functions. Here, we present ellipsometrically determined pseudodielectric function $\epsilon_{\text{eq}}(\omega)\equiv(\epsilon_{\text{ref}}+i\epsilon_{\text{sm}})$ spectra from 0.73 to 6.45 eV of bulk GaSe (γ-phase) and InSe (γ-phase) single-crystals grown by a vertical Bridgman method. The surfaces with minimum overlayer are obtained by peeling off the top few layers from the sample surface and ellipsometric measurements were immediately followed under flowing N2 environment, which yields good approximations to the intrinsic dielectric responses. The measured spectra exhibited a number of interband-transition critical-point structures, and their energy values were obtained precisely from numerically calculated second-energy-derivatives of ϵ_{eq}, assuming the parabolic-band critical-point model.

Data obtained in this work can be used to model PV device structures utilizing GaSe and InSe, and the critical-point energies determined will be useful for theoreticians to perform fine band structure calculations of III-VI compounds.

The work done at Universitat de València was supported in part by the Spanish Project MAT2007-06841. This abstract is subject to U.S. government rights.

8:40am AS+EM+MS+TF-MoM2 Ellipsometric Porosimetry for the Microstructure Characterization of Plasma-Deposited SiOx-Like Films, M. Creatore, N.M. Tertlinden, G. Aresta, M.C.M. van de Sanden, Eindhoven University of Technology, The Netherlands

SiOx layers have been deposited from Ar-O2-hexamethyldisiloxane mixtures in a remote expanding thermal plasma setup enabling a good control of both the ion flux (by changing the deposition chemistry and the arc plasma parameters) as well as the ion energy. This latter is achieved by an additional rf substrate biasing or a tailored ion biasing technique, i.e. a low frequency pulse-shaped bias. The role of the ion energy and ion-to-growth flux ratio on the film microstructure and densification at low substrate temperatures (100°C) has been investigated by means of ellipsometric porosimetry. This technique monitors the refractive index change due to the adsorption (and desorption) of ethanol vapors in the volume of macro-meso-micro pores in the SiOx layer. From the analysis of the adsorption isotherm and the presence of hysteresis during the desorption step as a function of the equilibrium partial pressure, the open porosity in the layer can be determined. It is found that both biasing techniques lead to densification of the deposited layer, which experiences a transition from micro-/ mesoporosity to microporosity and eventually non-porosity, as function of the increasing ion energy. Although both biasing techniques lead to a comparable critical ion energy value per deposited SiOx unit (about 100 eV), the ion-to-growth flux ratio and ion energy are not found to be interchangeable parameters. In fact, in the case of the rf bias, the meso- and large micropores are first affected leading to a quantitative decrease of porosity, i.e. from 11% to 3% at an ion energy less than 20 eV. A further increase in ion energy eventually reduces the presence of smaller micropores leading to non porous films at energy of 45 eV. When the pulse-shaped biasing technique is adopted, the micro- and mesopores are simultaneously affected over the whole range of available ion energy, leading to a non porous layer only at very high energy values, i.e. 240 eV. This difference is attributed to the increasing ion-to-growth flux ratio accompanying the rf biasing, as a consequence of the rf plasma generation in front of the substrate.