Ellipsometric Porosimetry for the Microstructure Characterization of Plasma-Deposited SiO2-Like Films

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Oct. 2019

III-VI compounds generally crystallize in layered-structures characterized by strong covalent interactions within the layers but weak Van der Waals binding between the layers. This unique structural characteristic has made III-VI compounds attractive for their potential applications in nonlinear optics. Among these compounds, in particular, InSe has been considered as a promising candidate for thin film photovoltaic (PV) material owing to its energy bandgap, optical and transport properties. Recently, high-quality epitaxial InSe thin films have been grown on GaSe substrates, and PV device structures containing n-InSe and p-GaSe have been successfully fabricated [1].

In order to design and optimize a high-performance PV device structure, knowledge of optical properties of constituent materials over a wide spectral range is required. However, large discrepancies were found in the properties of GaSe and InSe available in the literature, which have been measured mostly by reflectance methods with the Kramers-Kronig transformation employed to obtain the dielectric functions. Here, we present ellipsometrically determined pseudodielectric function \(\varepsilon = \varepsilon_1 + i\varepsilon_2 \) spectra from 0.73 to 6.45 eV of bulk GaSe (\(\varepsilon \)-phase) and InSe (\(\gamma \)-phase) single-crystals grown by a vertical Bridgman method. The surfaces with minimal overlayers are obtained by peeling off the top few layers from the sample surface and ellipsometric measurements were immediately followed under flowing \(\mathrm{N}_2 \) environment, which yields good approximations to the intrinsic dielectric responses. The measured spectra exhibited a number of interband-transition critical-point structures, and their energy values were obtained precisely from numerically calculated second-energy-derivatives of \(\varepsilon \) assuming the parabolic-band critical-point model.

Data obtained in this work can be used to model PV device structures utilizing GaSe and InSe, and the critical-point energies determined will be useful for theorists to perform fine band structure calculations of III-VI compounds.

The work done at Universitat de València was supported in part by the Spanish Project MAT2007-06841. This abstract is subject to U.S. government rights.

8:40am AS+EM+MS+TF-MoM2 Ellipsometric Porosimetry for the Microstructure Characterization of Plasma-Deposited SiOx-Like Films, M. Creatore, N.M. Tertind, G. Aresta, M.C.M. van de Sanden, Eindhoven University of Technology, The Netherlands

SiOx layers have been deposited from \(\text{Ar}/\text{O}_2 \)-hexamethyldisiloxane mixtures in a remote expanding thermal plasma setup enabling a good control of both the ion flux (by changing the deposition chemistry and the arc plasma parameters) as well as the ion energy. This latter is achieved by an additional rf substrate biasing or a tailored ion biasing technique, i.e. a low frequency pulse-shaped bias. The role of the ion energy and ion-to-growth flux ratio on the film microstructure and densification at low substrate temperatures (100°С) has been investigated by means of ellipsometric porosimetry. This technique monitors the refractive index change due to the adsorption (and desorption) of ethanol vapors in the volume of macroscale mesopores in the SiOx layer. From the analysis of the adsorption isotherm and the presence of hysteresis during the desorption step as a function of the equilibrium partial pressure, the open porosity in the layer can be determined. It is found that both biasing techniques lead to densification of the deposited layer, which experiences a transition from micro- to mesoporosity to microporosity and eventually non-porosity, as function of the increasing ion energy. Although both biasing techniques lead to a comparable critical ion energy value per deposited SiOx unit (about 100 eV), the ion-to-growth flux ratio and ion energy are not found to be interchangeable parameters. In fact, in the case of the rf bias, the meso- and large micropores are first affected leading to a quantitative decrease of porosity, i.e. from 11% to 3% at an ion energy less than 20 eV. A further increase in ion energy eventually reduces the presence of smaller micropores leading to non porous films at energy of 45 eV. When the pulse-shaped biasing technique is adopted, the micro- and mesopores are simultaneously affected over the whole range of available ion energy, leading to a non porous layer only at very high energy values, i.e. 240 eV. This difference is attributed to the increasing ion-to-growth flux ratio accompanying the rf biasing, as a consequence of the rf plasma generation in front of the substrate.

9:00am AS+EM+MS+TF-MoM3 Industrial Applications of Spectroscopic Ellipsometry, J.A. Woollam, J.A. Woollam Company, Inc., J.N. Hilfiker, P. He, J.A. Woollam Company Inc

Spectroscopic Ellipsometry (SE) has been used for decades for basic research on surfaces and thin films. Hundreds of articles, review papers, and books describe SE use in physics, chemistry and surface and materials engineering. Far less is available describing industrial applications because companies gain competitive advantage using SE and are not motivated to publish.

Without revealing anyone’s proprietary information, this talk reviews examples of SE use in industry. This involves both production quality control (QC), and product development. Best known is SE for QC in integrated circuit manufacturing. Others include integrated circuit critical dimension (CD) metrology, read-write heads, display technologies, optoelectronics, photovoltaics, thin films, optical coatings, wet-coaters, wear surfaces, and protective coatings. Industrial SE applications include ex-situ, in-situ, and in-line metrology.

Vanadium oxide thin films have been used for the last twenty years as the imaging material in uncooled infrared imaging devices. The important material properties for this application are a high thermal coefficient of resistance (TCR), controllable resistivity (\(\rho \)), low electrical noise and process compatibility with standard IC fabrication. However, vanadium can adopt many different oxidation states, yielding a number of stable metal oxides, which can lead to difficulties in reliable and consistent device fabrication. In this work, VOx thin films were fabricated via pulsed-DC magnetron sputtering in an argon and oxygen ambient at the same time. By varying total pressure and oxygen-to-argon ratio deposition conditions in order to investigate the variability in desired material properties. In situ real time spectroscopic ellipsometry (RTSE) has been applied to study films prepared under variable deposition conditions in order to evaluate the microstructural evolution of VOx during film growth and changes occurring to the surface and bulk material upon initial exposure to atmosphere. These films were characterized ex-situ using a number of complementary techniques including, Rutherford backscattering spectroscopy (RBS) in order to obtain the oxygen content, \(x \) transmission electron microscopy (TEM) to determine film crystallinity; glancing incidence X-ray diffraction (GIXRD) was used to ensure localized measurements from the TEM were representative of the entire film; and I-V curve measurements as a function of temperature were used to determine the film resistivity and TCR. By varying deposition conditions, the film resistivity was varied over several orders of magnitude from \(\approx 10^{-3} \) to \(10^{-4} \) 2Ω-cm and the TCR spanned from -0.1 to -3.5 %K. The growth evolution, complex dielectric function spectra (\(\varepsilon = \varepsilon_1 + i\varepsilon_2 \)), and structure are correlated to these electrical properties. Films produced at low oxygen-to-argon ratios exhibit nanocrystalline \(V_2O_5 \) and VO phase material dependent on the specific deposition conditions, while films produced at higher oxygen-to-argon ratios are amorphous. In both the nanocrystalline and amorphous phases, features in \(\varepsilon \) obtained from spectroscopic ellipsometry have been shown to correlate with the oxygen content and resistivity and RTSE studies have been used to monitor changes occurring at the film/ambient interface after the vanadium oxide is exposed to air. This array of techniques were used to establish the roles deposition parameters play in the final structure and composition of each film, as well as to determine the resulting effects of these characteristics on the electronic transport and optical properties.

Thin film hydrogenated silicon (Si:H) and germanium (Ge:H) have been of wide interest as thin film semiconducting materials, and are now of growing interest for use in infrared sensing uncooled microbolometers, although the impact of the growth evolution and structure on device performance is only beginning to be determined. Ideal properties for incorporation of these layers in microbolometers include: a high temperature coefficient of resistance (TCR), controllable resistivity (\(\rho \)), low 1/f noise within frequencies of interest, and process compatibility with standard IC.