Dielectric properties of thermal and plasma-assisted atomic layer deposition Al2O3 thin films

Citation for published version (APA):

DOI:
10.1149/1.3517430

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al₂O₃ Thin Films

K. B. Jinesh, J. L. van Hemmen, M. C. M. van de Sanden, F. Roozeboom, J. H. Klootwijk, W. F. A. Besling, and W. M. M. Kessels

*NXPI Semiconductors and *Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, The Netherlands
+Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

A comparative electrical characterization study of aluminum oxide (Al₂O₃) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al₂O₃ deposited by the plasma-assisted ALD shows excellent dielectric properties, such as better interfaces with silicon, lower oxide trap charges, higher tunnel barrier with aluminum electrode, and better dielectric permittivity (k = 8.8), than the thermal ALD Al₂O₃. Remarkably, the plasma-assisted ALD Al₂O₃ films exhibit more negative fixed oxide charge density than the thermal ALD Al₂O₃ layers. In addition, it is shown that plasma-assisted ALD Al₂O₃ exhibits negligible trap-assisted (Poole–Frenkel) conduction unlike the thermal ALD Al₂O₃ films, resulting in higher breakdown electric fields than the thermal ALD prepared films.

© 2010 The Electrochemical Society. [DOI: 10.1149/1.3517430] All rights reserved.

Manuscript submitted July 15, 2010; revised manuscript received October 27, 2010. Published December 2, 2010.

Experimental

Al₂O₃ thin films of thickness ranging from 5 to 80 nm were deposited on HF-last (hydrogen fluoride)-type 150 mm silicon wafers (with resistivity 3–10 Ω cm) in a FlexAl ALD reactor from Oxford Instruments (Oxfordshire, UK) in the remote plasma and thermal mode. The precursor used for the Al₂O₃ deposition was trimethylaluminum [TMA, Al(CH₃)₃], Akzo-Nobel (Amersfoort, Netherlands), selective semiconductor grade) which was vapor-drawn at room temperature. Using fast switching ALD valves, a saturated precursor dose was obtained by a 20 ms vapor injection. For the plasma process, the oxidation step took place using a 400 W O₂ plasma at 15 mTorr ignited for a duration of typically 2 s. The O₂ also served as a purge gas because there was no indication that the O₂ does react with Al(CH₃)₃ under the specific operation conditions used in the current work. The O₂ flow was kept constant at 60 sccm during the entire cycle. A cycle time of 4 s was obtained by employing a TMA purge of 1.5 s and a postplasma-purge of 0.5 s. For the thermal ALD, H₂O was vapor-drawn at room temperature and dosed in steps of at maximum 120 ms. A 110 sccm Ar flow (at 15 mTorr) was used as a purge gas and a pump–purge step (7 s evacuation and 5 s purging) was found most effective in removing the residual H₂O from the reactor. Typical cycle times for the thermal ALD process were 16 s. The substrate temperature was kept constant at 300°C for both the remote plasma ALD and the thermal ALD. During the ALD growth, film thickness measurements were carried out by in situ spectroscopic ellipsometry, employing a model-based analysis in which the standard Cauchy relationship is used to describe the dispersion of the refractive index of Al₂O₃. A detailed description of the material properties of the deposited films has been reported elsewhere. Furthermore, we want to note that the O₂ plasma properties and the plasma-assisted ALD process of Al₂O₃ have extensively been characterized in previous work.

Annealing of the Al₂O₃ films was done at 450°C in forming gas (10% H₂ and 90% N₂) for 30 min prior to the metal electrode depo-

* Electrochemical Society Active Member.
† Present address: Energy Research Institute at NTU (ERI@N), Nanyang Technological University, Research techno Plaza, Level 5, 50 Nanyang Drive, Singapore 639798.
‡ E-mail: jinesh@ntu.edu.sg
A 500 nm thick aluminum layer was sputter deposited on top of these thin films as an electrode material through a shadow mask to form Al/Al₂O₃/Si MIS capacitor test devices. Primarily two techniques were used for the electrical characterization of the capacitors, namely C–V measurements using an HP (Houston, Texas) multifrequency LCR meter and I–V measurements with an Agilent 4155C (Lexington, USA) semiconductor parameter analyzer. Capacitance measurements were done at 10 kHz (50 mV) ac modulation. The devices used for the electrical measurements had an electrode area of 100 μm × 100 μm.

Results and Discussion

Figure 1 shows the C–V characteristics of the capacitors with 10 nm thick films of (Fig. 1a) as-deposited thermal ALD Al₂O₃, (Fig. 1b) annealed thermal ALD Al₂O₃, (Fig. 1c) as-deposited plasma-assisted ALD Al₂O₃, and (Fig. 1d) annealed plasma-assisted ALD Al₂O₃. In both the thermal ALD and plasma-assisted ALD cases, forming gas annealing (FGA) appears to have a considerable influence on the device properties. The as-deposited thermal ALD Al₂O₃ films exhibit poor C–V curves with shoulders that correspond to interface states due to the defects such as Si dangling bonds at the Al₂O₃/Si interface. These characteristic bumps are seen both in the forward and reverse sweeps, indicating that the trap density is comparatively larger in these films. The curves exhibit a hysteresis of ∼0.3 V and a large flatband voltage shift, indicating that the oxide contains a significant number of mobile charges (such as oxygen vacancies and ions diffused into the oxide layer from the ambient). Upon FGA, the flatband shift and hysteresis are reduced (< 0.2 V) and the capacitance at accumulation condition has been enhanced by 23%. The reverse characteristic shows a smoother behavior as well, although the stretch out is still very significant. This indicates that the traps are still present but could be partially filled in the forward sweep and captured there, resulting in a smaller hysteresis.

The as-deposited plasma-assisted ALD films show better C–V characteristics compared with the thermal ALD films. These films also exhibit interface states, but unlike the thermal ALD films, they do not show characteristic bumps due to the trap levels in depletion, indicating that the oxide–silicon interface does not trap a significant number of charges. Upon FGA, the C–V curves become much smoother and no interface states are observed anymore. Upon FGA, two competing processes can occur in terms of the thickness of the films: a slight reduction in the thickness due to further densification and a slight increase in the thickness due to passivation of the defect by the incorporation of nitrogen or hydrogen atoms. The saturation capacitance of the thermal ALD films increases by approximately 4%, which could be due to a slight densification of the film during FGA. Conversely, the as-deposited plasma-assisted ALD films are already denser than the thermal ALD films, as has been reported before. Therefore, the dominating effect should be a minor swelling of the films, resulting in a slight reduction in the saturation capacitance upon FGA, as shown in Fig. 1.

Figure 2 depicts the equivalent oxide thickness (EOT) calculated for films with different thicknesses deposited with (Fig. 2a) the thermal ALD and (Fig. 2b) the plasma-assisted ALD techniques. To estimate the EOT, the expression $EOT = e_0 \times k_{SiO_2} \times (C/A)$ was employed, assuming that the interfacial SiO₂ layer has a dielectric constant of $k_{SiO_2} = 3.9$. From the slope of these plots, the k-values of the stacks can be estimated from the expression $k = \frac{EOT}{d/EOT}$. A k-value of 6.7 was estimated for the as-deposited thermal ALD films, remaining practically the same (at 6.5) upon FGA. As evident from Fig. 2a, FGA does not have any significant influence on the dielectric properties, but it improves the interface quality with the electrodes. In contrast, the as-deposited plasma-assisted ALD films
The error-bars are smaller than the size of the symbols.

The flatband shift can be expressed as

\[V_{FB} = \phi_{MS} - (Q_f + Q_d) \frac{d}{\varepsilon k} - \frac{1}{\varepsilon k} \int_0^d [\rho_m(x) + \rho_d(x)] dx \] \[[1] \]

where \(\phi_{MS} \) is the work-function difference between the metal electrode and the silicon substrate. The second term represents the contribution to the mirror charge in the semiconductor conduction band from the sum of the fixed oxide charge \(Q_f \) and the oxide trap charges at the interface \(Q_d \). The third term represents the mobile charges and the oxide trap charges in the oxide, which are responsible for the hysteresis in the \(C-V \) curves (here \(\rho_m(x) \) and \(\rho_d(x) \) represent the mobile and oxide trap charge densities, respectively). The positive flatband shift in all \(C-V \) curves of the plasma-assisted ALD samples indicates that the fixed oxide charges and the interface trap charges are negatively charged. This is in line with what has been reported by Wilk et al.\(^2\) and what Hoex et al. have demonstrated for the plasma-assisted ALD \(Al_2O_3 \) films earlier.\(^4\) The thermal ALD films do not show a gradual flatband shift with the oxide thickness, which might indicate that the mobile charges and the sum of the fixed oxide charges and the oxide trap charges at the interface have opposite signs and their effect cancel out eventually. Conversely, the plasma-assisted ALD films exhibit a gradual linear increase in \(V_{FB} \). In these samples, the mobile and oxide trap charges are significantly less because the \(C-V \) curves do not show considerable hysteresis. Therefore, it can be safely assumed that the integral part of Eq. 1 is negligibly small for the plasma-assisted ALD films. Thus, from the slope of the data in Fig. 3a and b, the total of the fixed oxide and interface trap charges \(Q \) can be estimated using

\[Q = \frac{V_{FB} \rho_{fixed}}{EOT} - e \] \[[2] \]

with \(e \) being the elementary charge.

For the as-deposited plasma-assisted ALD \(Al_2O_3 \) devices this estimation yields a negative charge density of \(-9.5 \times 10^{12} \) cm\(^{-2}\), which reduces to \(-5.0 \times 10^{12} \) cm\(^{-2}\) after FGA. In comparison, this density is within the range of the negative fixed charge densities of \(5 \times 10^{12} \) to \(1 \times 10^{13} \) cm\(^{-2}\) observed earlier for the plasma-assisted ALD \(Al_2O_3 \) films deposited at 200°C and annealed at 425°C in N\(_2\) atmosphere\(^4\) and for the plasma-assisted \(Al_2O_3 \)/TiN stacks deposited at 400°C.\(^9\) The negative fixed charge density is two times smaller than the fixed oxide charge density of \(1.15 \times 10^{13} \) cm\(^{-2}\) reported for the thermal \(Al_2O_3 \) film postdeposition annealing at a much higher temperatures such as 700°C.\(^3\)

Figure 4a shows the comparison of the \(I-V \) characteristics of the as-deposited and annealed samples, represented as the current density versus electric field \((J-E) \) plots of 10 nm \(Al_2O_3 \) deposited using thermal ALD. The electric field was defined as the applied voltage across the electrodes divided by the total film thickness measured using in situ spectroscopic ellipsometry and X-ray reflectometry. It is seen that by forming gas annealing, the electrical properties such as the leakage current and the tunneling behavior of the films have improved appreciably.

Figure 4b shows the comparison of the \(J-E \) characteristics of the as-deposited \(Al_2O_3 \) film with annealed plasma-assisted ALD \(Al_2O_3 \) film. Apparently, there is not much change in the leakage behavior of the plasma-assisted ALD film upon annealing, except a minor reduction of the leakage current before Fowler–Nordheim (F–N) tunneling sets in close to an electric field of 6 MV/cm. The onset for Fowler–Nordheim charge conduction increases upon annealing for the thermal ALD films (3.5 MV/cm) but does not reach the onset for F–N for the plasma-assisted ALD films (6 MV/cm). From the \(I-V \) measurements of ten devices distributed on different locations of the wafer, the average breakdown field of the thermal ALD \(Al_2O_3 \) is \(-5 \pm 0.8 \) MV/cm, whereas that of the plasma-assisted ALD film is \(-9 \pm 0.5 \) MV/cm upon electron injection from the Al top electrode.

Figure 5 shows the Arrhenius behavior of the current density \(J \) of 10 nm thick \(Al_2O_3 \) films deposited with thermal and plasma-assisted
ALDs. In order to ensure that the measurements are not influenced by the electron tunneling through the films, the leakage current measurements performed at different temperatures were at a fixed electric field of 3 MV/cm, which results under the space-charge limited conduction regime. The slope of the distribution is given by $\Delta E/k$, from which the activation energy ΔE of the traps can be estimated (k is the Boltzmann constant). From Fig. 5a, the thermal activation energy of the shallow traps is estimated to be 0.53 ± 0.01 eV for the as-deposited thermal ALD films. The activation energy is reduced to 0.27 ± 0.01 eV for the thermal ALD films after FGA, as shown in Fig. 5b. In the case of the plasma-assisted ALD films, the as-deposited films have a thermal activation energy of 0.28 ± 0.02 eV, as estimated from Fig. 5c, which reduces upon FGA to 0.08 ± 0.02 eV, as shown in Fig. 5d. This reduction indicates that the trap levels originating from the imperfections of the oxide–silicon interfaces such as dangling bonds and defects are healed out upon annealing.\(^{12}\) This shows that the plasma-assisted ALD films have a much better interface and oxide properties compared to the thermal ALD films.

Because the Al$_2$O$_3$/Si conduction band-offset is 2.8 eV, the effect of Schottky emission of electrons can be ignored. From the Arrhenius behavior, we can conclude that the leakage current through the thermal ALD films is more sensitive to temperature than through the plasma-assisted ALD films and indicates that the electric conduction mechanism could be significantly influenced by the trap levels distributed below the conduction band of the thermally deposited oxide films. Therefore, the role of Poole–Frenkel (P–F) conduction cannot be neglected in these films. The P–F charge injection is a thermally activated and electric field-assisted thermal hopping mechanism of the charge carriers through the trap levels in the conduction band of the oxide. The current density due to the P–F charge injection is expressed as\(^{21}\)

$$J_{P-F} = CE \exp\left(-q \frac{d_i - \sqrt{qE/\pi\epsilon_{ox}kT}}{kT}\right)$$

where d_i is the trap depth, as derived from the Arrhenius behavior, and ϵ_{ox} is the dynamic dielectric constant of the film.

Figures 6a and b show the Poole–Frenkel behavior of the annealed thermal ALD and plasma-assisted ALD films, respectively. Even after annealing, the thermal ALD films are sensitive to temperature, while the plasma-assisted ALD films show no temperature sensitivity at all, again underlining the good quality of the oxide achieved by plasma-assisted ALD. From the P–F characteristics of the thermal ALD films, the dynamic dielectric constant ϵ_{ox} was estimated to be 2.04 ± 0.15. This corresponds to a refractive index of 1.43 \pm 0.05. This is somewhat lower than the value of \sim1.65 for dense, amorphous Al$_2$O$_3$ films deposited by ALD reported previously\(^{22}\) and is considerably lower than the bulk value of a single-crystalline Al$_2$O$_3$, which lies in the range of 1.70–1.76 depending on the crystal structure of the oxide.\(^{12}\)

Figure 7 demonstrates the F–N tunneling behavior of the annealed thermal ALD and plasma-assisted ALD films. As evident from the characteristics, the thermal ALD films have an earlier onset of the F–N tunneling than the plasma-assisted ALD films. The F–N tunneling depends on the energy difference of the conduction bands of the electrode (here aluminum) and the oxide materials. Thus, a larger current at an earlier onset of the tunneling implies that the conduction band of the thermal ALD oxide is lower than that of the plasma-assisted ALD oxide with respect to the conduction band of the Al electrode. This is evidenced by the slope of the tunneling characteristics as well.

The leakage current at high electrical fields through a dielectric material as a result of F–N tunneling is given by\(^{24}\)
effective mass of 0.23\(m_0\) for Al\(_2\)O\(_3\) (Ref. 10), the estimated Al–Al\(_2\)O\(_3\) barrier height values are plotted as a function of the oxide thickness in Fig. 8 for the thermal ALD and plasma-assisted ALD films. The barrier heights generally do not depend on the thickness of the films, which means that any influence of direct tunneling is unlikely, even in the thinnest (5 nm) films investigated here. Annealing does not seem to have a significant influence on the barrier height of the films. However, a clear difference in the barrier height is observed between the thermal and plasma-assisted ALD films. The average Al–Al\(_2\)O\(_3\) barrier height of the latter films is 2.47 ± 0.36 eV, while that of the thermal ALD films is 1.32 ± 0.16 eV. The theoretical Al–Al\(_2\)O\(_3\) barrier height reported by Miyazaki is 2.25 eV, and the photoemission studies by Goodman indicate an Al/Al\(_2\)O\(_3\) barrier height of 2.0 eV. The leakage current through the device, as evident from Eq. 4, increases exponentially with the reducing barrier height and thus a lower barrier height contributes to the larger power consumption of the device.

The \(I–V\) characteristics of the thermal ALD films point to a rather leaky oxide. The leakage current improves considerably after FGA. Plasma-assisted ALD films exhibit a much lower leakage current, which does not change noticeably after FGA. Thermally grown ALD films have a higher thermal activation energy compared to the plasma-assisted ALD films. This is consistent with the \(C–V\) measurements that suggest that the thermal ALD films have more trap states than the plasma-assisted ALD films. Conversely, plasma-assisted ALD has less interface-trap levels as well, which suggests the impact of the O\(_2\) plasma on the nucleation behavior of the film in the early stages of the growth. The chemisorption of the Al-precursor—Al(CH\(_3\))—in the thermal and plasma-assisted ALDs are the same, but after the reaction, the –CH\(_3\) ligands are removed in the plasma-assisted ALD films. This is consistent with the thermal ALD films as a function of film thickness in their as-deposited (represented by 5, 10, and 20 nm) and annealed states (represented by 5, 10, and 20 A). The open symbols represent the barrier heights of the as-deposited and the closed symbols represent the barrier heights of the annealed devices.

Effective mass of 0.23\(m_0\) for Al\(_2\)O\(_3\) (Ref. 10), the estimated Al–Al\(_2\)O\(_3\) barrier height values are plotted as a function of the oxide thickness in Fig. 8 for the thermal ALD and plasma-assisted ALD films. The barrier heights generally do not depend on the thickness of the films, which means that any influence of direct tunneling is unlikely, even in the thinnest (5 nm) films investigated here. Annealing does not seem to have a significant influence on the barrier height of the films. However, a clear difference in the barrier height is observed between the thermal and plasma-assisted ALD films. The average Al–Al\(_2\)O\(_3\) barrier height of the latter films is 2.47 ± 0.36 eV, while that of the thermal ALD films is 1.32 ± 0.16 eV. The theoretical Al–Al\(_2\)O\(_3\) barrier height reported by Miyazaki is 2.25 eV, and the photoemission studies by Goodman indicate an Al/Al\(_2\)O\(_3\) barrier height of 2.0 eV. The leakage current through the device, as evident from Eq. 4, increases exponentially with the reducing barrier height and thus a lower barrier height contributes to the larger power consumption of the device.

The \(I–V\) characteristics of the thermal ALD films point to a rather leaky oxide. The leakage current improves considerably after FGA. Plasma-assisted ALD films exhibit a much lower leakage current, which does not change noticeably after FGA. Thermally grown ALD films have a higher thermal activation energy compared to the plasma-assisted ALD films. This is consistent with the \(C–V\) measurements that suggest that the thermal ALD films have more trap states than the plasma-assisted ALD films. Conversely, plasma-assisted ALD has less interface-trap levels as well, which suggests the impact of the O\(_2\) plasma on the nucleation behavior of the film in the early stages of the growth. The chemisorption of the Al-precursor—Al(CH\(_3\))—in the thermal and plasma-assisted ALDs are the same, but after the reaction, the –CH\(_3\) ligands are removed in the plasma-assisted ALD by a combustionlike process with the oxygen radicals rather than through a ligand exchange reaction. It has been demonstrated elsewhere that the actual carbon contamination is below the detection limit (i.e., < 1 atom %) of Rutherford backscattering analyses for both the thermal and plasma-assisted ALD Al\(_2\)O\(_3\) films deposited at temperatures > 200°C. Although very small concentrations of impurities can already give rise

\[
J_{F-N} = \frac{e^m}{16\pi\hbar m_{ws}^2\Phi_B^2} E^2 \exp \left(- \frac{4}{3} \frac{m_{ws} \Phi_B^2}{e\hbar E} \right) \tag{4}
\]

\(\Phi_B\) is the barrier height for the tunneling and \(m_{ws}\) is the effective mass of electrons in the oxide. With a reported electron
to large electrical effects, the remaining carbon concentration (e.g.,
due to unreacted methyl groups) is considered to have a small im-
 pact on the electrical properties. This is due to the modest temperature
budget during the forming gas anneal which is not able to
remove the methyl groups from the films. On the contrary, the
amount of hydrogen in the Al₂O₃ film could be an indication for the
passivation level. Especially, the difference between the thermal and
the plasma ALD processes could be explained by the ability to pas-
vate the dangling bonds with atomic hydrogen during the FGA.
Also the density of the film which is slightly higher for the plasma-
assisted ALD films is an indication that already during the film
growth the atoms are more closely packed, forming an amorphous
and denser Al–O–Al network. The discontinuities at the Si interface
(not all Si atoms are connected via an oxygen atom to aluminum)
and larger density of unreacted –OH groups within a thermally
grown film on Si could act as active centers for the electron trap-
ing, thus prompting the thermal ALD films to exhibit Poole–
Frenkel charge injection at lower electric fields.

Conclusions

The C–V behaviors of the as-deposited and annealed thin films of
Al₂O₃ deposited by the thermal and plasma-assisted ALDs indicate
that the plasma technique yields a better Al₂O₃–Si interface from
electrical perspective, though the interfacial oxide thicknesses in
both cases are comparable. This is revealed by the flatband voltage
shifts of the plasma-assisted ALD films which exhibit a linear rela-
tion with the thickness of the oxide. Presumably due to the domi-
nance of mobile ions in the oxide, the thermal ALD films do not
exhibit such a linear increase of the flatband voltage shift and, in
addition, these films exhibit a larger hysteresis in the C–V behavior.
The dielectric permittivity of the annealed plasma-assisted ALD
Al₂O₃ is relatively high (κ = 8.8) and comparable to bulk Al₂O₃,
whereas thermal ALD gives a lower κ-value (κ = 6.7). In addition,
the Al–Al₂O₃ barrier height of the plasma-assisted ALD oxides is
almost twice larger than that of the thermal ALD oxide, which to-
gether with the low defect density explains the origin of the lower
leakage currents through the plasma-assisted ALD Al₂O₃ films.
The dielectric breakdown electric field of the plasma-assisted ALD
Al₂O₃ is 9 MV/cm, where as the thermal ALD Al₂O₃ breaks down
at 5 MV/cm, again confirming the superior quality of the plasma-
assisted ALD Al₂O₃ over the thermal ALD Al₂O₃.

Acknowledgments

Part of this work has been supported by SenterNovem, an agency
of the Netherlands Ministry of Economic Affairs under the project
INNOVia no. IS 044041.

References

D. L. Kaiser, H. Wu, and J. B. Bernstein, in Sixth International Symposium on
Plasma Process-induced Damage, American Vacuum Society, Monterey, CA, IEEE
6. E. P. Gusev, M. Copel, E. Carrier, J. J. R. Baumnov, C. Krug, and M. A. Gribelyuk,
252110 (2005).
(2007).
10. S. Ferrari, F. Perissonotti, E. Peron, L. Fumagalli, D. Natali, and M. Sampietro,
11. O. Hahnel, P. Sievila, N. Chekurov, and I. Tittonen, J. Micromech. Microeng., 17,
737 (2007).
16. J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S.
17. J. Schmidt, A. Merkje, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M.
19. D. Hoogeland, K. B. Jinesh, F. Rooseboom, W. F. A. Besling, M. C. M. van de
20. J. Buckley, D. De Salvo, D. Delérynyé, M. Gely, G. Nicotra, S. Lombardo, J. F.
Darnelcourt, P. Hollinger, P. Martin, and S. Delobelle, Microelectron. Eng., 80,
210 (2005).
22. J. L. van Hemmen, S. B. S. Heil, J. H. Klotzwijk, F. Rooseboom, C. J. Hodson, M.
C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc., 154, G165
(2007).
23. S. B. S. Heil, P. Kudlacek, E. Langereis, R. Engeln, M. C. M. van de Sanden,
24. E. H. Nicoll and J. R. Brews, MOS (Metal-Oxide-Semiconductor)-Physics and
25. D. Hoogeland, K. B. Jinesh, F. C. Voigt, W. F. A. Besling, Y. Lamy, F. Roose-
boom, M. C. M. van de Sanden, and W. M. M. Kessels, ECS Trans., 25(4), 389
(2009).
415, 186 (2002).
30. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M.
31. S. B. S. Heil, J. L. van Hemmen, M. C. M. van de Sanden, and W. M. M. Kessels,
32. E. Langereis, J. Krijnem, M. C. M. van de Sanden, and W. M. M. Kessels, Appl.