Phase noise in frequency divider circuits

Citation for published version (APA):

DOI:
10.1109/ISCAS.2008.4541973

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
II. MODELS OF PHASE NOISE IN FREQUENCY DIVIDERS

Several models for classifying and describing the phase noise of digital FDs are available [1]–[3]. Levantino et al. in [3] present a physical derivation of phase noise in a source-coupled logic D latch. However, they do not quantify the total divider-by-N phase noise. Phillips and Egan in [1] and [2] attempt to model the phase noise of digital FD architectures. However, they make certain assumptions that limit the design space at which their model is applicable. In the following, we identify the limitations of the existing models and extend Phillips’ model to include noise sources and effects that occur in a generic divider architecture.

A. Phillips’ and Extended Phillips’ model

The total divider output phase noise according to Phillips’ model is

\[\phi_{out}^2 = \left(\frac{\phi_{in}}{N} \right)^2 + \left(\frac{v_n}{K_p} \right)^2 \left(\frac{2H}{N} + \phi_{p,1}^2 + \phi_{p,2}^2 + \ldots + \phi_{p,M}^2 \right), \tag{1} \]

where \(\phi_{in} \) is the narrow-band “input phase noise”, \(v_n \) models driving source noise, as well as device input noise in between divider interstages, \(H \) is the maximum significant harmonic, \(N \) is the division ratio, \(K_p \) is the zero crossing slope measured in volts/radian, and \(\phi_{p,n}^2 \) is the “propagation-delay noise” of the \(n^{th} \) gate [1].

In the first term on the right hand side of equation (1), the \(1/N^2 \)-dependence is derived from FM theory. The second term represents the equivalent input phase noise power (from input noise voltages) \(2v_n^2/K_p^2 \), divided by \(N^2 \) also according to FM theory and simultaneously multiplied by \(HN \) to incorporate the “sampling effect” (sampling results into a replication (aliasing) of the wide-band noise spectrum at a rate \(\alpha f_{out} \), where \(f_{out} \) is the output frequency of the divider stage and \(\alpha \) equals 2 or 1 for sampling once or twice per cycle, respectively). In the following, we prefer to formulate the “sampling effect” in a different way. As Fig. 1 shows, the bandwidth \(BW \) of the divider stage determines how many of the replicated spectra (due to sampling) contribute to the total noise. The aliased spectra are responsible for the extra gain factor of \(\alpha BW/f_{out} \), and thus one needs to multiply \(2v_n^2/(K_pN)^2 \) by this factor. This factor equals \(N \) only under the condition that \(BW = NF_{out} = f_{in} \) which yields the minimum bandwidth for which correct division can be sustained.
Phillips assumes that a total of M gates contribute to the total propagation delay \(\phi \) of a synchronous divider stage. This does not include the case of asynchronous stages. In the case of M asynchronous divider stages, the total propagation-delay noise at the output of the M-th stage is

\[
\phi^2 = \left(\frac{\phi_{in}}{N_1} \right)^2 + \left(\frac{\phi_{out,1}}{N_2} \right)^2 + \ldots + \phi_p^2,
\]

where \(N_i \) is the division ratio of the i-th synchronous divider stage.

Finally, similarly to Egan, Phillips assumes that the only point where an AM to PM noise transformation occurs is at the input of the total divider structure. This is true if and only if the signals driving the divider inter-stages are resembling square waves which is unrealistic at higher frequencies.

Despite these limitations, Phillips' model can be easily made into a model that, first, takes into account the sampling effect for all wide-band noise sources; second, does not assume square-like driving signals; and third, concerns a generic divider structure consisting of both synchronous and asynchronous stages.

We start by modifying eq. (1) so as to incorporate the sampling effect into the model. For a synchronous divider-by-N, one may write

\[
\phi_{out}^2 = \left(\frac{\phi_{in}}{N} \right)^2 + \alpha \frac{BW}{f_{out}} \left(\frac{v_{n,1}}{K_{p,1}} \right)^2 + \phi_{p,1}^2.
\]

Here, the aliasing of the additive input voltage noise is accounted for by multiplying this noise type by \(\alpha BW/f_{out} \).

To obtain the general form of Phillips' model, we consider two stages of synchronous dividers coupled in an asynchronous fashion as depicted in Fig. 2. The first synchronous divider realizes a division-by-\(N_1 \) and the second one a division-by-\(N_2 \). The total division is, thus, \(N_1N_2 \). We apply eq. (3) on each divider stage to obtain the total noise at the output of the first- and second-asynchronous stages.

\[
\phi_{out,1}^2 = \left(\frac{\phi_{in}}{N_1} \right)^2 + \alpha \frac{BW_1}{f_{out,1}} \left(\frac{v_{n,1}}{K_{p,1}} \right)^2 + \phi_{p,1}^2,
\]

\[
\phi_{out,2}^2 = \left(\frac{\phi_{out,1}}{N_2} \right)^2 + \alpha \frac{BW_2}{f_{out,2}} \left(\frac{v_{n,2}}{K_{p,2}} \right)^2 + \phi_{p,2}^2.
\]

Substituting eq. (4) in eq. (5), we obtain the expression for the total output phase noise power,

\[
\phi_{out}^2 = \left(\frac{\phi_{in}}{N_1N_2} \right)^2 + \phi_{p,1}^2 + \phi_{p,2}^2 + \alpha \left[\left(\frac{v_{n,1}}{K_{p,1}} \right)^2 \frac{2}{N_1^2N_2^2} + \left(\frac{v_{n,2}}{K_{p,2}} \right)^2 \frac{2}{N_2^2} + \frac{BW_1}{f_{out,1}} + \frac{BW_2}{f_{out,2}} \right].
\]

Here, \(K_{p,i} \) is the zero crossing slope of the driving signal, \(v_{n,i} \) is the noise power in rms values within the Nyquist band, and \(\phi_{p,i} \) represents the propagation delay noise of the \(i \)-th component.

Note that the parameters determining the bandwidth \(BW \) influence the value of \(K_p \) which drives the subsequent divider stage. We identify here one design trade-off: (a) \(BW \) should be as small as possible to decrease the gain due to sampling while (b) \(BW \) should be as large as possible to increase \(K_p \). Additionally, the extended model covers cases where the synchronous division ratios \(N_1 \) and \(N_2 \) are unequal and larger than or equal to 2, as well as cases where the driving signals between divider stages are not square-like. The former enhances the generic character of the model. The latter models the additive phase noise in between divider-stages. Finally, \(\phi_{in} \) and \(v_{n,i} \) are phase noise parameters intrinsic to the unit elements of each divider stage and hence, are treated as an independent modeling procedure. Such a model is presented by Levantino et al. in [3].

Understanding the impact that design parameters, such as \(BW \), division number \(N \), and number of asynchronous stages, have on the total output phase noise, helps us choose their values. However, we are still missing a reliable way of predicting the phase noise values of a FD. In the following, we will evaluate the "time domain" (strobed) phase noise analysis offered by the commercial simulator Spectre RF.

III. TEST CHIPS FOR MEASUREMENTS

To verify the accuracy of the "strobed" phase noise analysis against measured values, we layout two different designs under test (DUT), namely a synchronous and an asynchronous divider-by-4 architecture. Fig. 3 shows their block diagrams.

To ensure sufficient reliability of the measurements, one must isolate the DUT from any external noise source. We use the typical I/Q measurement setup [2]. Two identical dividers (DUT1 and DUT2) are driven by the same signal generated by an on-wafer input amplifier used to convert the single-ended source output to a differential one at the clock inputs. DUT2 is preset to be 90° out of phase with respect to DUT1 (this is the proper condition for operation of a balanced-mixer phase detector). The I and Q signals are fed into the mixer, which is
A. Divider-by-2 cell

The divider-by-2 cells, that are used in each DUT, are the state-of-the-art adaptive FD cells [4], see Fig. 4. We recall that, in the adaptive architecture, the cross-coupled stage and the amplifier stage in each Dlatch are biased independently. By biasing the cross-coupled pair \(I_{\text{gate}} \) with lower current than the one in the amplifier stage \(I_{\text{latch}} \), we extend the frequency of operation.

B. Measurement set-up

Calibration of the measurement set-up (depicted in Fig. 5 excluding the test chip in its path) shows that its noise floor is \(L(2MHz) = -155dBc/Hz \) at \(f_{\text{out}} = 5GHz \). The high \(1/f \) noise present in GaAs low noise amplifiers (LNA) restricts our experiment only within the white noise region. Unfortunately, we cannot eliminate these LNA, since amplification of the output I/Q signals is necessary.

C. Simulations versus measurements

To measure the phase noise generated by our DUT, we perform ”phase noise without a PLL” measurements, involving the calibration of the phase detector constant which determines the absolute noise floor of the system. Table I shows the measured and simulated phase noise results at \(f_m = 2 \) MHz. These results were obtained under different input frequencies, cross-coupled pair current biasing and divider architectures. We mark as N/A the set of conditions for which division was impossible. Simulations match the measurements within 1 dB.

D. Theory versus measurements

Since theory only models the various effects qualitatively and not quantitatively, we can only compare relative theoretical values. In particular, we focus on replacing an asynchronous by a synchronous architecture (accumulation effect), doubling the input frequency (sampling effect) and decreasing the biasing current in the cross-coupled pair.

1) Asynchronous against Synchronous: Theoretically, the asynchronous divider-by-4 contributes 3 dB more phase noise than its synchronous divider-by-4 equivalent. The total phase noise at the output node of the asynchronous architectures is

\[
S_{\phi,\text{asyn}}(f_m) = (2\pi f_{\text{out},1})^2 S_{v,1}(f_m) + (2\pi f_{\text{out},2})^2 S_{v,2}(f_m) \frac{S_{\text{Slope}}}{S_{\text{Slope}}}.
\]
where $f_{out,x}$, $S_{v,x}$ and Slope_x denote the frequency, the spectrum of the noise (in V^2/Hz) and the slope of the driving signal at node x, see Fig. 3. Since $f_{out,1} = 2f_{out,2}$, $S_{v,1} = S_{v,2}/2$ and $\text{Slope}_1 = \text{Slope}_2$, $S_{\phi,\text{async}}(f_m)$ becomes

$$S_{\phi,\text{async}}(f_m) = 2(2\pi f_{out,2})^2 \frac{S_{v,2}(f_m)}{\text{Slope}_2^2}. \tag{6}$$

For the synchronous divider-by-4 architecture, only the second divider stage is important,

$$S_{\phi,\text{sync}}(f_m) = (2\pi f_{out,2})^2 \frac{S_{v,2}(f_m)}{\text{Slope}_2^2}. \tag{7}$$

Subtracting eq. (7) from eq. (6) (reexpressed in dB units), we obtain $S_{\phi,\text{async}}(f_m) - S_{\phi,\text{sync}}(f_m) = 3$ dB, which deviates from the simulated and measured 1 dB value. We recall that input and output slope values are equal in both divider stages in our theoretical calculations. However, Slope_2 may be deteriorated with respect to Slope_1, since the loading conditions for each of the divider-by-2 stages are unequal, and hence, the percentage of total phase noise attributed to the second divider stage increases.

2) Sampling effect: We perform phase noise measurements at $f_{in} = 10 \text{ GHz}$ and $f_{in} = 20 \text{ GHz}$ and observe an increase of 3.5 dB. Theoretical calculations show that doubling the input frequency f_{in} increases the output phase noise by 3 dB. For the asynchronous architecture, we calculate

$$S_{\phi,\text{async}}(f_m) = (2\pi f_{out,2})^2 \frac{S_{v,2}(f_m)}{\text{Slope}_2^2}. \tag{8}$$

Fig. 6 assists us in extracting a set of relations. Since

$$f_{in,\text{new}} = 2f_{in}, \text{ it holds that } f_{out,2,\text{new}} = 2f_{out,2}, \ S_{v,2,\text{new}} = S_{v,2}/2 \text{ and } \text{Slope}_{\text{new}} = \text{Slope}. \text{ Then, eq. (8) becomes}$$

$$S_{\phi,2f_{in}}(f_m) = 2(2\pi f_{out,2})^2 \frac{S_{v,2}(f_m)}{\text{Slope}^2}. \tag{9}$$

Subtracting eq. (8) from eq. (9) (reexpressed in dB units), we obtain $S_{\phi,2f_{in}}(f_m) - S_{\phi,f_{in}}(f_m) = 3$ dB. The theoretical calculations validate the measurements with the precondition that the value of Slope at the output of the divider stages is analogous to BW. As we show subsequently, this assumption is under certain conditions invalid.

3) Biasing conditions: We recall the “adaptive frequency” divider architecture depicted in Fig. 4 and its feature of extending the maximum frequency of operation by decreasing the biasing current at the cross-coupled pair [4]. During our measurements, we observe that the improvement in maximum frequency of operation does not come at the cost of an increased phase noise performance. To the contrary, phase noise measurements performed with $I_{\text{latch}} = I_{\text{gate}}/2$ prove equally or less noisy than under $I_{\text{latch}} = I_{\text{gate}}$. The shot noise, which in great extent defines $S_v(f_m)$, decreases with I_{latch}. At moderate frequencies $f < f_o$, Slope follows BW; hence, a higher I_{latch} means a higher Slope value, Fig. 7. However, for high frequencies $f \geq 2f_o$, where the gain is limited, the Slope does not depend on BW anymore, see Fig. 7. Therefore, phase noise becomes solely a function of $S_v(f_m)$ at these frequencies.

IV. CONCLUSIONS

We extended Phillips’ model to include noise sources and effects occurring in a generic divider architecture. We also changed the model to include high frequency effects (such as AM to PM transformation in the divider interstages) as well as design parameters such as bandwidth of each synchronous divider stage BW, the number of asynchronous divider stages, and the division ratios N_i, that are better suited to our design objectives (high frequency, low phase noise and low power).

The measurements on the taped-out test-structures, at different biasing and frequency conditions, allowed us to observe the accumulation and sampling effects on the phase noise performance of the FD. We also observed that lowering the biasing current of the cross-coupled pair degrades the phase noise performance at moderate frequencies while it improves it at higher frequencies. Measurements and simulations match within 1 dB. Therefore, the “time domain” phase noise simulations of Spectre RF estimate accurately the phase noise in all cases considered in this paper.

REFERENCES