Reducing truncation errors by low order augmentation of the observer model for flexible systems
Verkerk, K.W.

Published in:
34th Benelux Meeting on Systems and Control

Published: 25/03/2015

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Reducing truncation errors by low order augmentation of the observer model for flexible systems

K.W. Verkerk
Department of Electrical Engineering - Control Systems group
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
k.w.verkerk@tue.nl

1 Introduction

An observer can be used in high precision control of flexible systems to increase the achievable feedback control bandwidth [1]. As the real flexible system contains a large amount of modes, it is required to truncate the model used in the observer. This truncation will introduce model mismatch which increases the estimation error, specifically during acceleration trajectories. This abstract describes a method to reduce the model mismatch in the frequency region of interest with a minimum increase in the order of the observer model.

The flexible systems considered are assumed to be in modal state space form,

\[
\sum \begin{cases}
\eta = \begin{bmatrix} 0 & 1 \\ -\Omega^2 & -2\zeta\Omega \\ \Phi_s & 0 \end{bmatrix} \eta + \begin{bmatrix} 0 \\ \Phi_d \end{bmatrix} u \\
y = \begin{bmatrix} \Phi_s & 0 \end{bmatrix} \eta
\end{cases}
\] (1)

Here, \(\eta = [\eta_1 \ldots \eta_N \ \eta_1 \ldots \eta_N]^T \) denotes the modal state vector, \(\Omega \) is a diagonal matrix containing the \(N \) modal frequencies in ascending order, \(\Phi_s \in \mathbb{R}^{m \times N} \) describes the mapping from each mode to each of the \(p \) outputs, \(\Phi_d \in \mathbb{R}^{m \times N} \) describes the mapping from each of the \(m \) inputs to each mode, \(\zeta \in \mathbb{R}^{N \times N} \) is the modal damping matrix, and \(0 \) and \(I \) are respectively zero and identity matrices of appropriate dimensions.

The limiting factor on feedback bandwidth stems from the first few flexible modes and thus one would like to use an observer model containing only \(n < N \) modes. The structure of (1) can be easily truncated to the appropriate number of modes. Unfortunately the higher modes, that are discarded by the truncation, do affect the system transfer function at low frequencies too, thereby introducing model error in the observer. By suitably selecting augmentation dynamics for the truncated model this mismatch can be reduced.

2 Augmentation dynamics

For low frequencies the \(n_d = N - n \) discarded modes can be described by a constant gain. The dynamics of the discarded modes are given by,

\[
\sum_d \begin{cases}
\dot{\eta}_d = \begin{bmatrix} 0 & 1 \\ -\Omega_d^2 & -2\zeta_d\Omega_d \\ \Phi_d & 0 \end{bmatrix} \eta_d + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u \\
y_d = \begin{bmatrix} \Phi_d & 0 \end{bmatrix} \eta_d
\end{cases}
\] (2)

where all matrices are truncations of the system matrices in (1). The DC gain, \(K \), of (2) is given by,

\[
K = \begin{bmatrix} \Phi_d & 0 \end{bmatrix} \begin{bmatrix} 1 & -\Omega_d^2 & -2\zeta_d\Omega_d \\ -I \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Phi_d^{-T}
\] (3)

The matrix \(K \) can be added as a direct feedthrough term to the truncated model. Alternatively, a low pass structure can be used to keep the observer model strictly proper. From the matrix dimensions in (3) it follows that rank \((K) = r \leq \min(n_d, m, p) \). By taking the singular value decomposition (SVD) of \(K \) one obtains \(K = U \Sigma V^T \), where \(U \in \mathbb{R}^{p \times r} \), \(V \in \mathbb{R}^{m \times r} \) are both unitary and \(\Sigma \in \mathbb{R}^{r \times r} \) is a diagonal matrix containing the singular values. The resulting low pass augmentation dynamics of order \(r \ll 2n_d \) are then given by,

\[
\sum_c \begin{cases}
\dot{z} = -\omega_c z + \omega_h V^T u \\
y_c = Uz
\end{cases}
\] (4)

where \(\omega_c > \omega_h \) is the cut-off frequency of the low pass filters.

When parameter dependency is present in the system (2) this method can still be applied. The DC gain (3) will become parameter dependent as well. By grouping the known parameter dependencies at the input or output matrices it is possible to take the SVD and obtain parameter independent low pass augmentation dynamics that are pre or post multiplied by a parameter dependent matrix.

References