Effects of Finite-Precision Arithmetic in Enumerative Coding

Kees A. Schouhamer Immink and Augustus Janssen

Abstract — The storage requirements of conventional enumerative schemes can be reduced by using floating point arithmetical operations instead of the conventional fixed point operations. The new enumeration scheme incurs a small coding loss. A simple relationship between storage requirements and coding loss is derived.

I. INTRODUCTION
Translation using enumeration has the virtue that the complexity (weight storage) grows polynomially with the code-word length contrasting the complexity of direct look-up which grows exponentially. Here we use a floating point instead of a fixed point representation of the weights. The floating-point notation is convenient for representing numbers that differ many orders of magnitude. In this notation, each weight is represented by s bits, and as a result, the hardware required for storage grows linearly with the codeword length n. The penalty attached to the finite-precision representation of the weights is that it will entail a (small) loss in code rate. A quantitative trade-off between the precision of the number representation and concomitant code redundancy will be detailed. We will apply the theory to the enumeration of $(dklr)$ sequences.

II. ENUMERATION USING FLOATING-POINT ARITHMETIC
The hardware for implementing the enumeration algorithm comprises a (binary) adder, a subtracter, a comparator, and a look-up table of the pre-computed set of weights. The binary fixed-point representation of a single weight requires Rn bits per weight, where R, $0 < R < 1$, is a constant. For the overall scheme, we need therefore storage proportional to Rn^2. We develop an enumeration method where the weights are specified in floating-point notation.

We employ a two-part radix-2 representation

$$I = (m, e)$$

to express the weight

$$I = m \times 2^e,$$

where I, m, and e are non-negative integers. The two components m and e are usually called mantissa and exponent of the integer I, respectively. The translation of a weight into (m, e) is easily accomplished. It is assumed that the exponent of each weight is represented by e_p bits.

Let I be the short-hand notation of one of the weights $N^l(i)$. It is well known that the non-negative integer I, $I < 2^n$, can be uniquely represented by a binary v-tuple $\mathbf{x} = (x_{v-1}, \ldots, x_0)$, where

$$I = \sum_{i=0}^{v-1} x_i 2^i.$$

The binary v-tuple \mathbf{x} is called the binary fixed-point representation of I. Let $u = \lfloor \log_2 I \rfloor$ be the position of the leading 'one' element of \mathbf{x}. Then the p-bit truncated decimal representation of I, denoted by $[I]_p$, can be represented in binary floating-point representation whose mantissa requires at most p non-zero bits. The enumeration algorithms can be employed directly by using the 'truncated' coefficients. The enumeration algorithm itself remains unchanged. The effect on the set of codewords will be that recursively a number of the highest ranking words of length i are discarded from the set of all lexicographically ordered sequences. Using finite precision of the weights representation (truncation) will result in coding loss as available words must be discarded. For (dk) sequences the loss in capacity resulting from the truncation of the weights can be described in terms of an autonomous finite-state machine. From the theory of feedback registers we know that the sequence of the mantissa will ultimately become (and remain) periodic.

A more heuristic analysis, where the truncation is modelled as a stochastic process, offers a simple rule of thumb of the capacity loss, namely

$$C(d, k) = C(d, k) \approx 2^{-(p+2)}.$$

III. CONCLUSIONS
We have introduced a scheme of enumerative coding using floating-point arithmetic. This scheme offers, for long codewords, a significant advantage in storage requirements. A simple relationship between coding efficiency versus encoding or decoding hardware (storage) has been derived.