Study of inertia and stoichiometric effect on surface diffusion by Monte Carlo method
Noureddine, M.; Kaoui, B.; Nassif, R.; Boughaleb, Y.

Published in:
Moroccan Journal of Condensed Matter

Published: 01/01/2007

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):
Study Of Inertia And Stoichiometric Effect On Surface Diffusion
By Monte Carlo Method

M. Noureddine1, B. Kaoui1, R. Nassif1,2, Y. Boughaleb1

1Laboratoire de physique de la matière condensée, Faculté des Sciences Ben M’sik, Casablanca / MAROC.
2Laboratoire de physique de la matière condensée, Faculté des Sciences El Jadida / MAROC

In this work, we investigate the inertia and stoichiometric effect on surface diffusion of adsorbates particles. The study is done by means of Monte-Carlo simulation in the framework of the lattice gas model. Only first neighboring repulsive pair interaction is considered. We concentrate on the behaviour of the tracer diffusion coefficient \(D_t(\theta) \), as a function of surface coverage \(\theta \) in the case where two type of particles A and B are adsorbed. A and B are only different by their mass. The results shows that \(\theta \) ordering phenomenon is not strongly influenced. However the diffusion process is decreased by inclusion of heavy particles.

I. INTRODUCTION

Surface diffusion plays a fundamental role in various physically and technological important processes, such as adsorption, desorption, melting, roughening, crystal and film growth, catalysis and corrosion [1-10]. More effort has been directed toward understanding the physical laws of nature that govern the diffusion of adatoms on solid surfaces. Due to all these activities, it is fair to say that many of the prominent features of surface diffusion under ideal conditions in equilibrium are now well understood.

The situation becomes much more complicated, however, when the system is no longer ideal but containing particles with different mass and concentrations. In this work we investigate inertia and stoichiometric effect on diffusion of adsorbate particles. We consider a particularly occupied bidimensional lattice with two type of particles A and B. We carry out Monte Carlo simulations for a lattice-gas model with repulsive interactions between nearest neighbor particles. We expect the behaviour of the tracer diffusion coefficient, \(D_t \), versus the ratio mass and concentrations.

In the section 2 we present the lattice gas model, in section 3 we define the tracer and diffusion coefficients. In section 4 we will describe the simulation and discuss the results obtained.

II. THE MODEL

We consider a lattice a gas system of \(N \) particles on square lattice with nearest neighbor interaction. Thermodynamical state of the adparticle system at instant time, is completely described by configuration \(\{n\} \):

\[\{n\} = \{n_1, n_2, \ldots, n_i, \ldots, n_{N-1}, n_N \} \]

where \(n_i \) is an occupation number

The Hamiltonien for this model is given by:

\[\mathcal{H} = J/2 \sum_{\langle i, j \rangle} n_i n_j + \mu_0 \sum_i n_i \quad (1) \]

where the interaction constant \(J \) is positive for repulsive and negative for attractive interactions.

For each site “\(i \)”, we define an occupation number \(n_i \) which is equal to unity if site “\(i \)” is occupied by one particle and zero otherwise. Double occupation of a same site is forbidden.

The notation \(\langle i,j \rangle \) implies the summation in eq(1) over each pair of particles in nearest neighboring sites.

The diffusion process of the particles is assured by the change of the occupation numbers of the lattice sites. In the lattice gas formulation this can be seen as the change of the lattice configuration. The dynamics of the lattice is governed by the phenomenological master equation [11,12] which describes the evolution in time of the probability \(P(\{n\}, t) \) of the configuration \(\{n\} \).

\[\frac{\partial P(\{n\}, t)}{\partial t} = \sum_{\{n'\}} \omega(\{n'\}, \{n\}) P(\{n\}, t) - \omega(\{n\}, \{n'\}) P(\{n'\}, t) \]

\[\omega(\{n\}, \{n'\}) = \omega(\{n'\}, \{n\}) P_{eq}(\{n\}) \quad (2) \]

\[\omega(\{n\}, \{n'\}) P_{eq}(\{n\}) = \omega(\{n'\}, \{n\}) P_{eq}(\{n'\}) \quad (3) \]

III. The tracer and jump diffusion coefficients:
For the quantitative description of diffusion we briefly recall two concepts, which describe the adparticle migration. Conceptually the simplest diffusion coefficient, D_t, which addresses the random walk of individual tagger particles on two-dimensional lattice. D_t is defined as

$$D_t = \lim_{t \to \infty} \frac{1}{2 N dt} \sum_{i=1}^{N} \left(\langle \Delta r_i(t) \rangle^2 \right)$$

(4)

Where d is the system dimension ($d=2$), $\Delta r_i(t)$ denotes the shift of the ith adparticle during time t. The brackets $<...>$ denote ensemble averaging.

The jump diffusion coefficient, D_j, is a many particle diffusion coefficient describing the asymptotical behaviour of the mean square displacement of the center of mass of the adparticles. D_j is defined as

$$D_j = \lim_{t \to \infty} \frac{1}{4 N t} \left(\sum_{i} \langle \hat{r}_i(t) \rangle \right)^2$$

(5)

The corresponding relation between the two coefficients is given by:

$$D_j = D_t \left(1 + \frac{\sum_{i \neq j} \langle \hat{r}_i(t) \hat{r}_j(t) \rangle}{\sum_{i} \langle |\hat{r}_i(t)|^2 \rangle} \right) = D_t f$$

(6)

where f is the so-called correlation factor

IV. Simulation and Results

The Monte Carlo technique is probably one of the most reliable methods which can be used to study adparticle diffusion on different lattices and for various sets of the interaction [15-17]. Our 2D system consists on a square lattice with $L \times L$ sites and periodic boundary conditions. The probability of obtaining a given configuration will be given by the corresponding Boltzmann factor:

$$P = C \exp \left(-\frac{\mathcal{H}}{k_B T} \right) \sum_{\{\bar{n}\}} n_i n_j$$

(7)

With C is a normalisation factor. We are interested to investigate the influence of inertia on surface diffusion. Initial lattice gas configurations concern surface coverage θ with different proportion of A and B particles and for many ratio of their mass.

We are carried out MC Metropolis algorithm [18]:

1. first, we select a tagged particle of the lattice.
2. then an adjacent final site “j” is randomly chosen
3. if the destination is vacant, a jump can occur with the probability P_{tj}, otherwise no jump occurs.

$$P_{tj} = C_{tj} \exp \left(-\frac{1}{k_B T} \mathcal{H} \right)$$

(8)

$C_t = \lambda_{ij}$ if the particle is of mass M_i, λ defines the mass ratio of of particles A and B.

$\mathcal{H} = \mathcal{H}_f - \mathcal{H}_i$ denotes the activation energy for such jump, it is calculated as the difference between final and initial energy.

Before starting the diffusion runs the equilibration of the system is performed for 10^4 MCS. The lattice size is $L=30$.

In the MC method the tracer diffusion and the jump diffusion coefficient respectively D_t and D_j can be easily determined from measurements of the mean square displacements of particles according to eq(7) and eq(8).

The displacements $\hat{r}_i(t)$ are expressed in units of the lattice constant a_0.

The calculations are done in the case where interaction regime favors the appearance of order.

Fig 1. The tracer diffusion coefficient versus concentration for $N_a = 2N_b$

Fig 2. the tracer diffusion versus concentration at rate of inertia $M_b/M_a = 3$
In order to expect the influence of stoichiometric, we calculate the D_t for different proportions of light and heavy particles. Fig II shows that inclusion of heavy particles reduces the diffusion. No influence on ordering is observed. To get a better understanding of inertia effect, we report the dependency of D_t on M_a/M_b for different concentration regimes. This figure III shows that the usual dependency of D_t on mass is valid only for light density limit.

Fig. 3a. The tracer coefficient versus the rate of inertia at $N_a = N_b$.

V. Conclusion

The present work deals with adsorbates diffusion on surface systems. We showed that adsorption of two different elements that interaction repulsively does not affect the ordering phenomenon. Diffusion process is found to be reduced by introducing heavy particles.

References