Modelling of geophysical vortices

Citation for published version (APA):

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Modelling of Geophysical Vortices

Prof. dr. ir. GertJan van Heijst (TU/e)

Abstract

The large-scale vortex structures that are commonly observed both in the oceans (e.g. Gulf Stream rings) and in the atmosphere (hurricanes, cyclones, Jupiter’s Great Red Spot) are in good approximation two-dimensional (2D), due to the combined effects of geometrical confinement (essentially, the oceans and atmosphere are thin fluid shells), density stratification, and planetary rotation. Their dynamics is governed by conservation of potential vorticity, which is here defined as $PV = (f + \omega)/H$, with f the Coriolis parameter ($=2\Omega \sin \phi$, with Ω the planetary station speed, ϕ the geographical latitude), ω the local relative vorticity, and H the local layer depth (column height).

The latitudinal gradient in f provides a self-propelling mechanism to the vortices: cyclonic vortices show a drift in NW direction, while anticyclonic vortex structures have a tendency to drift to the SW. This is e.g. nicely observed in the NW-drifting vortices that are shed from the retroreflecting Agulhas Current, south of Africa.

Gradients in the Coriolis parameter f can be mimicked in a rotating fluid tank by applying a suitably chosen bottom topography, e.g. a linearly sloping bottom. Laboratory experiments in such rotating tank configurations have provided useful insight in the drift properties of coherent vortices.

A remarkable property of 2D turbulent flows is the inverse energy cascade, which leads to so-called ‘selforganisation’, as observed in the emergence of larger vortices. During this evolution one frequently observes different types of interactions between vortices, e.g. merging of like-signed vortex structures, and the tearing of a vortex in the strain field induced by its neighbours. These types of interactions have been studied both by numerical simulations and in laboratory experiments.

Another aspect that will be addressed in the lecture concerns the transport and mixing properties of vortices. This is in particular relevant for a better understanding of large-distance tracer transport in the ocean and the mechanism of the transport barrier in the atmospheric polar vortices. In the latter case, the limited mixing at the vortex edge prevents the filling up of the ozone-depleted vortex core (the ‘ozone hole’) by ozone from moderate latitudes. Numerical simulations – based on the contour dynamics method – have provided important insight in the dynamics of the polar vortices and their mixing properties.

Over de spreker