Definition of validated membrane reactor model for 5KW power output CHP under different natural gas compositions

Definition of validated membrane reactor model for 5 kW power output CHP system under different natural gas composition

G. Di Marcoberardino*, F. Galluccio*, G. Manzolini*, M. van Sint Annaland*

*aDepartment of Energy – Politecnico di Milano, via Lambruschini 4, 20156 Milano, Italy
*bDepartment of Chemical Engineering and Chemistry - Eindhoven University of Technology, P.O. Box 513, 5612 AZ Eindhoven, The Netherlands

*Corresponding author: gioele.dimarcoberardino@polimi.it – www.gecos.polimi.it

Abstract

In the last years, many studies focused on the adoption of membrane reactor in micro-cogeneration system based on PEM fuel cell thanks to the pure hydrogen production. This work deals with (i) the design of a FBMR flexible towards different NG qualities (ii) and its integration in PEM based systems of 5 kW power output system. Indeed the variation of NG composition has a big impact on the performance of the micro-CHP system and fuel processor lifetime. Four typical NG compositions from reference European countries are considered in this study 2 different membrane reactor are compared: the first is a 1D phenomenological model, the latter is inside a model of the overall PEM based micro-CHP in Aspen Plus. Furthermore, since the overall PEM based micro-CHP system is modelled using Aspen Plus®, the phenomenological model is used to validate the fuel processor implemented in the CHP model. In this case, the FBMR is model by adapting a series of equilibrium reactors followed by hydrogen extraction.

Micro-CHP Layout flexibility

The micro-CHP system is designed to generate 5 kWel and 6.2 kWh of hot water (where the cooling circuit temperatures are 60/40 °C). At design conditions, the net electric efficiency and the total efficiency are respectively 40.1% and 89.2%. The fuel processor is based on fluidized autothermal membrane reactor (600 °C and 8 bar) fed with NG, producing pure hydrogen flow (@ 0.3 bar) without the use of sweep gas. An air flow, below the stoichiometric value, burns a fraction of NG in order to sustain the endothermic SR reactions. From the vacuum pump, the H₂ flux feeds a dead-end LT PEM FC (@ 75 °C) cooled by the water heat recovery loop.

Membrane Reactor Model (1)

The phenomenomical 1D membrane reactor model allows the simulation of FBMR for separation of hydrogen from a reacting mix undergoing steam methane reforming (SMR) or autothermal reforming (ATR). The steady state overall (bubble and emulsion phases) component mass conservation equations and the total volume balance (to calculate the excess velocity) have been formulated, taking chemical transformations in the emulsion phase and a net gas production due to the chemical reactions and gas removal via membranes into account.

Membrane Reactor Model (2)

The membrane reactor, implemented in Aspen Plus®, is discretized in a series of 10 reactors and separators. Each reactor is set to equilibrium conversion (SR/WMGS reactions + Total Oxidation at the inlet) by Gibbs free energy minimization. In the separators, hydrogen is extracted (infinite perm-selectivity is assumed) according to the permeation expression. In both the models, temperature profile along the reactor bed is uniform both radially and axially.

Results

Performances of the micro-CHP system under the 4 EU NG qualities are reported in the table. Since the reactor operating pressure is constant for all the cases, the only parameter control is the air flow \(\dot{\text{A}} \).

The NL case has the low electric efficiency due to the large amount of N₂ in the NG; this implies an higher power input and higher auxiliary losses. On the other hand it has the best thermal recovery. The other 3 cases have quite similar performances even if the ES case, with the big amount of hydrocarbons heavier than methane, has the best electric performances.

This work is funded within FERRET project as part of the European Union’s Seventh Framework Programme (FP7/2007–2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement nº 621181. Note: “The present publication reflects only the author’s views and the FCH JU and the Union are not liable for any use that may be made of the information contained therein”.

12th International Conference on Catalysis in Membrane Reactors – 22-25 June 2015, Szczecin, Poland