Spectroscopic investigation of wave driven microwave plasmas

Wijtvliet, R.G.; Felizardo, E.; Tatarova, E.; Dias, F.M.; Ferreira, C.M.; Nijdam, S.; Veldhuizen, E.V.; Kroesen, G.M.W.

Published in:
Journal of Applied Physics

DOI:
10.1063/1.3259429

Published: 01/01/2009

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 08. Oct. 2018
Spectroscopic investigation of wave driven microwave plasmas

R. Wijtvliet,1,2 E. Felizardo,1 E. Tatárova,1,a) F. M. Dias,1 C. M. Ferreira,1 S. Nijdam,2 E. V. Veldhuizen,2 and G. Kroesen2
1Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
2Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 29 July 2009; accepted 13 October 2009; published online 17 November 2009)

Large H atom line broadening was found throughout the volume of surface wave generated He–H2 and H2 microwave plasmas at low pressures. The measured Doppler temperatures corresponding to the Hg, H3, H2, and H2 line profiles were found to be higher than the rotational temperature of the hydrogen molecular Fulcher-α band and the Doppler temperature of the 667.1 nm singlet He line. No excessive broadening has been found. The Lorentzian and Gaussian widths as determined by fitting the spectral lines with a Voigt profile increase with the principal quantum number of the upper level. In contrast, no such dependence for the Gaussian width has been observed in an Ar–H2 discharge. No population inversion has been observed from measurements of the relative intensities of transitions within the Balmer series.

I. INTRODUCTION

The study of the emission of “mixed gas” plasmas reveals many surprising results, especially when hydrogen is one of the gases. Anomalous, even extreme, hydrogen line broadening was found in a number of mixed discharge plasmas excited via direct current (dc) or radio frequency (rf) electric fields.1–5 The Balmer line spectra emitted by these discharges have typical multimode behavior, with widely broadened “wings” (“fast” hydrogen) and a sharp top (“slow” hydrogen). The results have usually been explained in terms of Doppler shift and broadening due to the acceleration of charges (such as H+, H2+, and H3+ ions) in the high dc electric fields present in the sheath regions of these discharges. The acceleration of hydrogen ions in these dc fields is followed by neutralization and generation of fast excited H atoms. This is the origin of the “wings” in the spectra. Strikingly excessive Balmer-α line broadening has been observed in He–H2 (10%) microwave discharge,6 but this has not yet been confirmed by other research groups. On the contrary, measurements of H2 line profiles emitted by microwave discharges under similar conditions have not revealed excessive broadening.7–10

Nevertheless, selective hydrogen line broadening has been detected in microwave discharges and their afterglows when there is no significant broadening of noble gas lines or hydrogen molecular lines.8,9,11 A possible explanation for such selective heating of H atoms may be connected with the main creation processes of excited H atoms, namely, ion conversion and electron impact dissociation. Furthermore, hyperthermal hydrogen atoms have surprisingly been detected at atmospheric pressure Ar–H2 microplasma jets, where the H(n=3) temperatures were found to range from 12,000 to 19,600 K.12 It is now clear that hydrogen line broadening causes controversy so that more experimental observations are currently needed in order to try to elucidate the mechanisms and processes behind this phenomenon in different types of discharges. The aim of this experimental work is to address some of these problems.

This article presents spectroscopic measurements in He–H2 and Ar–H2 low-pressure plasmas generated by a surface wave of frequency ω/2π=2.45 GHz. Results on the line shape and the emission intensities of excited hydrogen and helium atoms, and the emission intensities of the Q-branch of the Fulcher-α band [d 3Πυ(v=1) → a 2Σ+(v=1)] are presented and discussed. Different temperatures are determined from the measured hydrogen and helium emission line shapes and the rotational distribution of hydrogen molecular lines. Furthermore, the population distribution of excited H atoms is determined from measurements of the relative intensities of transitions within the Balmer series.

II. EXPERIMENTAL SETUP AND DIAGNOSTIC METHODS

An experimental study of the spectral broadening of the Balmer lines of atomic hydrogen has been performed in He–H2, Ar–H2, and H2 plasmas at low pressure conditions (p=0.36 mbar). A classical surface wave sustained discharge has been used as a plasma source.13,14 The discharge is created using a waveguide surfatron-based set-up (Fig. 1). The microwave power is provided by a 2.45 GHz generator (Sairem), whose output power was varied from 40 to 250 W. The generator is connected to a waveguide (WR-340) system, which includes an isolator, a three-stub tuner, and a waveguide surfatron as the field applicator. The system is terminated by a movable short-circuit, which allows the maximization of the electric field at the launcher position. The discharge takes place inside a quartz tube with internal and external radii of 7.5 and 9 mm, respectively, which is inserted perpendicularly to the waveguide wider wall (Fig. 1). The background gas is injected into the discharge tube at flow rates from 0.4 to 20 SCCM under laminar gas flow conditions.

1Electronic mail: e.tatarova@ist.utl.pt.
The electromagnetic waves are coupled into the quartz tube via the launching gap of the surfaguide and they can travel in both directions (positive and negative) along the interface between the plasma and the tube. The discharge considered (positive direction of propagation) is sustained by the electric field of a surface wave, which simultaneously propagates and creates its own propagation structure. The wave power is progressively dissipated by the plasma electrons along the wave path and the absorbed power per unit length, as well as the electron density, decrease gradually toward the plasma column end. During its propagation, the wave follows the dispersion law shown in Fig. 1(b). In accordance with the experimental observations, the wave starts propagating with normalized wave numbers of approximately $\beta R \approx 0.5–0.6$, then βR increases until it reaches a “turning point” (due to collisional effects) and decreases to approximately the same value of βR as the initial one.\[3, 15\]

Under the present conditions, this corresponds to a decrease in electron density from about $(8–5) \times 10^{12} \text{ cm}^{-3}$ ($\omega_{pl}/\omega_{pe} = 0.2–0.25$, where ω_{pl} is the electron plasma frequency) at the beginning of the plasma column to about $(2–3) \times N_{cr}$ ($N_{cr} = 7.4 \times 10^{10} \text{ cm}^{-3}$) at the column end. At a distance of 3 cm from the launcher the electron density is in the range $2 \times 10^{12}–5 \times 10^{12} \text{ cm}^{-3}$ for the different mixture compositions used.

As is well known, the mean energy needed to create an electron-ion pair in microwave discharges varies significantly in different gases.\[16\] Therefore, different power densities are necessary to sustain a plasma column of the same length (~ 7 cm) for all the conditions considered here. Taking into account the total power delivered to the launcher and subtracting the reflected power, one can estimate the average absorbed power per unit volume. It varies from about 0.5–3 W/cm2, when the hydrogen percentage changes from 5 to 70% in Ar–H$_2$ mixtures, and from 2.8 to 5 W/cm2 when the H$_2$ percentage ranges from 5 to 85% in He–H$_2$ mixtures. For electron densities in the range $(3–5) \times 10^{12} \text{ cm}^{-3}$ in Ar–H$_2$ and $(2–2.5) \times 10^{12} \text{ cm}^{-3}$ in He–H$_2$ mixtures, the mean power needed to create an electron-ion pair can roughly be estimated: it is about $(6–8) \times 10^{5} \text{ eV/s}$ and $(1–8) \times 10^{7} \text{ eV/s}$ in Ar–H$_2$ and He–H$_2$, respectively. These are typical values for microwave discharges.\[16\] By applying the local power balance equation, an estimation of the microwave electric field intensity sustaining the discharge can readily be made.\[17\] It ranges nearly from 23 to 30 V/cm in Ar–H$_2$ and from 70 to about 100 V/cm in He–H$_2$.

The optical system used consists of a 1.25 m focal length (visible light) Jobin–Yvon Spex 1250 spectrometer, with a holographic ruled diffraction grating (2400 g mm$^{-1}$) that provides a nearly flat response between 300 and 800 nm, equipped with a liquid-nitrogen cooled charge coupled device camera. The slit was set at 10 μm in all cases. The light emitted by the plasma is collected perpendicularly to the discharge tube axis by an imaging optical fiber. A collimator located in front of the optical fiber defines the discharge volume from where the plasma radiation is collected. The measurements correspond to some radially averaged value over the plasma cross-section. It should be noted, however, that the central part gives the main contribution to the integral intensity detected. The optical fiber was placed at a distance $\Delta z = 3$ cm from the front line of the launcher. The plasma emission in the 300–800 nm range has been investigated. The spectral profiles of the H$_{\alpha}$, H$_{\beta}$, H$_{\gamma}$, H$_{\delta}$, and H$_{\zeta}$ lines, corresponding to the transitions $H[n(3–8)\rightarrow(n=2)]$ have been measured. In a series of independent measurements, the H$_2$ rotational temperature has been determined using the Q-branch of the Fulcher-α band rotational spectrum $[a \cdot 3\Pi_2(v=1)\rightarrow a \cdot 3\Sigma^+_2(v=1)]$ in the 600–617 nm wavelength range. The temperature corresponding to the Doppler broadening of He singlet line at 667.8 nm was also determined.\[8, 9\] The latter temperatures can be taken as a measure of the background gas temperature. The line intensities have been corrected for the spectral response of the overall system.

The measured Balmer line profiles have been fitted by a Voigt function, which results from the convolution of a Gaussian profile (due to Doppler and instrumental broadening) with a Lorentzian profile (due to Stark and instrumental broadening). A GRAMS/32$^\text{®}$ software has been used to this end. Therefore, the Lorentzian ($\Delta \lambda_L$) and Gaussian full widths at half maximum ($\Delta \lambda_G$) have been separated. The quality of the fitting is demonstrated in Fig. 2 where a comparison between experimental and calculated Voigt spectra is shown for different conditions. The fittings so achieved are very good, as $R^2 > 0.99$ and RMS errors less than 5% are
achieved. Since the Gaussian and Lorentzian widths so obtained include a contribution of the instrumental function, an accurate estimation of the latter has been made using a krypton spectral lamp (Frederiksen SR-Kr). The instrumental profile is very well fitted by a Voigt function (the Voigt full width at half maximum is 7.1 p.m.). The Gaussian and the Lorentzian widths of the instrumental Voigt function have been determined for a large number of Kr lines in the spectral range 400–800 nm and taken into consideration.

Typical values of the measured Lorentzian ($\Delta \lambda_L$) and Gaussian widths ($\Delta \lambda_G$) of the Balmer spectral lines when the instrumental broadening is subtracted are presented in Tables I and II for different conditions. As can be seen, $\Delta \lambda_L$ increases with the upper level principal quantum number, as expected when Stark broadening is in play (assuming Stark broadening results in a Lorentzian profile). The largest $\Delta \lambda_L$ value is obtained in Ar (95%–H$_2$ (5%) discharge, where the electron density reaches higher values (up to 5×10^{12} cm$^{-3}$). The electron density corresponding to the obtained $\Delta \lambda_L$ of Hγ is about $(3–5) \times 10^{12}$ cm$^{-3}$ (using the extrapolation of the theory given in Ref. 19), in close agreement with the predictions based on the wave dispersion law.

Moreover, a subtractive procedure has been applied in order to determine the “pure” Doppler broadening in the Gaussian part, taking into account the fine structure of the Balmer lines. The fine structure splitting consists of seven closely related components corresponding to transitions between sublevels s, p, and d. Each line is Doppler broadened so that the actual spectrum is the sum of seven Gaussians. As is known, when the kinetic temperature decreases the fine structure splitting starts to influence the Balmer lines shape. Figure 3 presents calculated H$_\alpha$ line spectra corresponding to the transition H$(n=5) \rightarrow$ H$(n=2)$ for eight different kinetic temperatures. As seen, for temperatures lower than about 1000 K the fine structure splitting must be taken into account. The corresponding temperatures have been determined from Doppler broadening assuming a Maxwellian distribution of the atoms according to the well known formula

$$\Delta \lambda_D = 7.16 \times 10^{-7} \lambda \sqrt{\frac{T}{M}},$$

where M is the atomic mass and λ is the central wavelength.

The temperature of the gas molecules was determined from measurements of the rotational distribution of excited molecular bands of H$_2$. The rotational temperature provides a measure of the gas temperature if the rotational relaxation time by collisions is much smaller than the radiative lifetime. In this case, the rotational distribution is close to a Boltzmann distribution with a temperature equal to the translational temperature of the mixing particles. In the present work, the rotational temperature measurements were performed using the Q branch of the Fulcher-α rotational spectrum [$a \rightarrow a \Sigma^+ (v' = 1) \rightarrow d \Pi (v = 1)$] in the range near 615 nm. For example, Fig. 4 shows the hydrogen molecule emission in the wavelength range of 611–617 nm. For the $d \Pi$ state, the small value of the spin-orbit interaction constant implies that the triplet splitting is negligible, which corresponds to a nearly pure Hund’s case b coupling. The $a \Sigma^+$ state is well described by a pure Hund’s case b coupling and the rota-

\[\text{FIG. 2. (Color) Measured profiles of Balmer lines fitted with a Voigt profile: (a) H}_\alpha \text{ line measured in Ar (50%)–H}_2\text{(50%) mixture; (b) H}_\beta \text{ line measured in He (85%)–H}_2\text{(15%) mixture; (c) H}_\gamma \text{ line measured in pure H}_2 \text{ discharge. The Lorentzian and Gaussian widths extracted from the fitting are shown together with the corresponding errors (in brackets). The instrumental broadening is included. The Voigt width is calculated from Gauss and Lorentz widths according to (Ref. 18). The correlation } R^2 \text{ and root mean square (RMS) error are indicated.} \]
It is generally accepted that the rotational constant of the ground state \(B \) can be considered instead of that of the excited state. Here, \(\Gamma \) is the total nuclear spin; \(\Gamma = 0 \) for the parastate \(H_2 \) and \(\Gamma = 1 \) for the orthostate \(H_2 \). The rotational lines alternate in intensity due to the statistical weight \(2^\Gamma + 1 \) (\(\Gamma = 0 \) and \(\Gamma = 1 \) for \(N \) even and odd, respectively). The rotational temperature is experimentally determined by plotting \(\ln I_{\text{em}}/(2N+1)(2\Gamma + 1) \) as a function of \(N(N+1) \). The rotational distribution of the line intensities of the Fulcher \(\alpha \) band nearly follows Boltzmann’s law as seen in Fig. 4. The rotational temperature is calculated taking into account the Hön–London factors.

III. RESULTS AND DISCUSSION

Figure 5 shows the measured rotational temperatures and the kinetic temperature derived from the broadening of the 667.8 nm singlet He line (\(3^1D \rightarrow 2^1P \) transition) for He–\(H_2 \) plasmas with different fractional compositions. The measurements are made at a fixed axial position \(\Delta z = 3 \) cm. The He line profile is well fitted by a Voigt function and the temperature has been determined as usual from the measured full width at half maximum of the line intensity. The instrumental full width at half maximum has also been deconvoluted. The values of \(T_{\text{rot}} \) corresponding to the transition \([d^3\Pi_u(v=1) \rightarrow a^3\Sigma_g^+(v=1)] \) vary between 900 and 1100 K. It should be emphasized that the Doppler temperature corresponding to the helium 667.8 nm singlet line ranges between 900 and 1100 K for the same conditions as seen in the figure. Upon inspection of the figure, it is clear that the Doppler temperatures are close to the rotational ones. Thus, these temperatures can be assumed as indicative of the gas temperature in the He/\(H_2 \) mixture.

A significant amount of data was collected in order to reliably detect trends in the Balmer line broadening in \(H_2 \), \(H_2 \), and \(Ar–H_2 \) microwave plasmas. Data on line broadening were systematically collected for the Balmer \(\alpha, \beta, \gamma, \delta, \epsilon, \xi \) lines corresponding to the transitions \(H(n=3–8) \rightarrow H[(n=2)] \) at fixed axial position \(\Delta z = 3 \) cm from the launcher (see Fig. 1). The length of the generated plasma column is about 7 cm.

The variation of the kinetic temperatures for the \(He(70\%)–H_2(30\%) \) mixture and pure \(H_2 \) are shown in Figs. 6 and 7. A striking result is observed from these figures: hydrogen atoms excited in higher levels are hotter than those in the lower ones. For example, the kinetic temperature of \(H(n=8) \) is higher than that of \(H(n=4) \). As seen, the increase in kinetic temperature with the upper level principal quantum number is a systematic trend. What can be the reason for such a behavior? Keeping in mind the microwave electric field intensity values, the measured Gaussian width may be influenced by Stark splitting due to the microwave electric field. The linear Stark splitting caused by a microwave field with an average intensity \(\langle E \rangle = E_0/\sqrt{2} \) (assuming that the microwave field at 2.45 GHz acts as a dc field) induces a broadening \(\Delta E \) of the Balmer lines \([n \rightarrow 2] \) given by

\[
\Delta E_n (\text{eV}) \approx 7.9 \times 10^{-9} (n^2 - 4) \times \langle E \rangle \ (\text{V/cm}).
\]

This extra broadening induces an error in determining the “pure” Doppler temperature. The results shown with triangles in Figs. 6 and 7 are the calculated kinetic temperatures when Stark splitting is taken into consideration and subtracted, assuming the highest value of the electric field intensity, i.e., 100 V/cm. As seen, the temperature increase with the upper level principal quantum number still remains.

TABLE I. Lorentz and Doppler widths (in pm) derived from Voigt fitting of Balmer emission lines in He–\(H_2 \) mixtures. The instrumental broadening is subtracted. The errors are shown in brackets.

<table>
<thead>
<tr>
<th>% (H_2)</th>
<th>(\Delta \lambda) [pm]</th>
<th>(H_\gamma)</th>
<th>(H_\delta)</th>
<th>(H_\varepsilon)</th>
<th>(H_\iota)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>(\Delta \lambda_\alpha)</td>
<td>1.8</td>
<td>1.7</td>
<td>12(35%)</td>
<td>...</td>
</tr>
<tr>
<td>14%</td>
<td>(\Delta \lambda_\beta)</td>
<td>13.6(32%)</td>
<td>13.9(25%)</td>
<td>7.9(50%)</td>
<td>...</td>
</tr>
<tr>
<td>70%</td>
<td>(\Delta \lambda_\gamma)</td>
<td>...</td>
<td>1.3</td>
<td>4.2(64%)</td>
<td>...</td>
</tr>
</tbody>
</table>

TABLE II. Lorentz and Doppler widths (in pm) derived from Voigt fitting of Balmer emission lines in Ar–\(H_2 \) mixtures. The instrumental broadening is subtracted. The errors are shown in brackets.

<table>
<thead>
<tr>
<th>% (H_2)</th>
<th>(\Delta \lambda) [pm]</th>
<th>(H_\gamma)</th>
<th>(H_\delta)</th>
<th>(H_\varepsilon)</th>
<th>(H_\iota)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>(\Delta \lambda_\alpha)</td>
<td>...</td>
<td>1.3</td>
<td>2.2</td>
<td>4.2(64%)</td>
</tr>
<tr>
<td>14%</td>
<td>(\Delta \lambda_\beta)</td>
<td>13.6(25%)</td>
<td>13.8(19%)</td>
<td>10(32%)</td>
<td>...</td>
</tr>
<tr>
<td>70%</td>
<td>(\Delta \lambda_\gamma)</td>
<td>14.2(25%)</td>
<td>14.1(25%)</td>
<td>13.8(25%)</td>
<td>13(20%)</td>
</tr>
</tbody>
</table>
Due to the high electron–H$_2$ mixture leads to increasing values of the Doppler width. The increase in the Gaussian width with the H$_2$ percentage can be strongly correlated with the generation of “hot” hydrogen atoms due to electron impact dissociation of H$_2$ molecules and dissociative recombination processes. Note that simple estimations show that H$^+_2$ are the dominant ions in He–H$_2$ and H$_2$ plasmas under the present conditions. Due to the high electron temperature (3–5 eV) achieved in this type of discharge, dissociative recombinant of electrons and H$^+_2$ can produce “hot” atoms excited at levels with principal quantum numbers as high as $n=7,8$. “Hot” excited H atoms can also be generated due to dissociation processes involving electrons and vibrationally excited H$_2$ molecules, such as $H_2^+(e) \rightarrow H^{+}_2(e=17–19\text{ eV}) + e \rightarrow H_{hot}(n=1) + H_{hot}(n=4–8) + e$.

Here, H$^+_2$ are hydrogen molecules excited in weakly bound electronic states with energy $e=17–19\text{ eV} > e_a + D_{H_2} + \Delta e_k$, where e_a are the excitation energies of the states $H(n=4–8)$, D_{H_2}=4.48 eV is the dissociation energy of hydrogen molecules and $\Delta e_k=0.1–1.4 \text{ eV}$ is the kinetic energy shared by the two H atoms produced.

As is well known, the generated hot H atoms do not thermalize with the background gas under the present low pressure conditions. The group of “cold,” excited H atoms is generated by direct electron impact excitation from the ground state. At the end, the presence of these “hot” and “cold” atom fluxes may result in the observed increase of atomic temperature with the upper level principal quantum number. However, further investigations, both experimental and theoretical, are needed to elucidate this phenomenon.

Similar measurements have been performed in the Ar–H$_2$ mixture. The results obtained at the same axial position ($\Delta z=3 \text{ cm}$) and for different mixture compositions are
Population inversion of excited atomic hydrogen has previously been observed in low-pressure water-vapor microwave plasmas from the relative intensities of the transitions within the Lyman and the Balmer series. A search for such a population inversion was also conducted here for \(H_2 \), He–\(H_2 \), and Ar–\(H_2 \) plasmas. To this end, the Balmer lines have been analyzed. The resulting Boltzmann plots for He–\(H_2 \) and Ar–\(H_2 \) mixtures are shown in Figs. 10 and 11. The data are collected at a distance of 3 cm from the launcher for different mixture compositions. Results for pure hydrogen are also plotted as a reference. These plots show the relative line intensity divided by the corresponding transition probability and level degeneracy versus the excitation energy of the level \(n \). As seen from these figures, no inversion of population is observed, but the deviations of the upper levels from a straight line plot indicate that the population density distribution is out of equilibrium. The distribution temperatures for the lower levels are approximately 1,500 (0.13 eV) and 1,400 K (0.12 eV) for He–\(H_2 \) and Ar–\(H_2 \) plasmas, respectively.

IV. CONCLUSIONS

Emission spectroscopy was used for the diagnostic of a surface wave sustained microwave plasma operating in helium-hydrogen and argon-hydrogen mixtures, and in pure hydrogen at low-pressure. The Doppler temperatures corresponding to the helium singlet line at 667.8 nm (\(3^1D → 2^1P \) transition) are the same as the rotational temperatures determined from the Q-branch of the Fulcher-\(\alpha \) band.
The principal quantum number is observed in He–H₂ and H₂ plasmas, i.e., an increase of kinetic temperature with upper level electronic levels appear to be hotter than those in lower levels within the Balmer series, for all the conditions considered. The data obtained in pure hydrogen plasma (100%) are also given as a reference.

\[d^3 \Pi_u(v=1) \rightarrow a^3 \Sigma^+_g(v=1) \] under the same conditions. The present results demonstrate that the kinetic temperature of emitting H atoms is higher than the background gas temperature in He–H₂ and H₂ plasmas. H atoms excited at higher electronic levels appear to be hotter than those in lower levels, i.e., an increase of kinetic temperature with upper level principal quantum number is observed in He–H₂ and H₂ plasmas. Note that, in contrast, no such dependence has been observed in the Ar–H₂ discharge. Work is in progress to investigate this effect under conditions of negligible Stark effect and to model the phenomena observed here. Finally, note that no population inversion was found in the present work from measurements of the relative intensities of transitions within the Balmer series, for all the conditions considered.

ACKNOWLEDGMENTS

This study was funded by FCT/FEDER through the project “Ecological Plasma Laboratory” POCI/FIS/61679/2004. Useful discussions with Professor Boris Gordiets and Dr. Mário Lino da Silva are greatly acknowledged.