On exact group extensions

Aaronson, J.; Denker, M.

Published: 01/01/1999

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Report 99-047
On Exact Group Extensions
Jon Aaronson
Manfred Denker
ISSN 1389-2355
ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We give conditions for the exactness of \mathbb{R}^d-extensions.

§0 INTRODUCTION

A nonsingular transformation (X, B, m, T) of a standard probability space is called a fibred system if there is a generating measurable partition α such that $T : a \to Ta$ is invertible, nonsingular for $a \in \alpha$, and a Markov map (or Markov fibred system) if in addition, $Ta \in \sigma(\alpha) \mod m \ \forall \ a \in \alpha$.

Write $\alpha = \{a_s : s \in S\}$ and endow S^N with its canonical (Polish) product topology. Let

$$\Sigma = \{s = (s_1, s_2, \ldots) \in S^N : m(\bigcap_{k=1}^{n} T^{-k}a_{s_k}) > 0 \ \forall \ n \geq 1\},$$

then Σ is a closed, shift invariant subset of S^N, and there is a measurable map $\phi : \Sigma \to X$ defined by $\{\phi(s_1, s_2, \ldots)\} := \bigcap_{k=1}^{\infty} T^{-k}a_{s_k}$.

The closed support of the probability $m' = m \circ \phi^{-1}$ is Σ, and ϕ is a conjugacy of (X, B, m, T) with $(\Sigma, B(\Sigma), m', \text{shift})$. Thus we may, and sometimes do, assume that $X = \Sigma$, T is the shift, and $\alpha = \{[s] : s \in S\}$.

For $n \geq 1$, there are m-nonsingular inverse branches of T denoted $v_a : T^n a \to a$ and with Radon Nikodym derivatives denoted

$$v'_a := \frac{dm \circ v_a}{dm}.$$

Let (X, B, m, R) be a nonsingular transformation of a standard probability space. The Frobenius-Perron operators $P_{R^n} = P_{R^n,m} : L^1(m) \to L^1(m)$ are defined by

$$\int_X P_{R^n} f \cdot g \ dm = \int_X f \cdot g \circ R^n dm$$

and for the locally invertible (X, B, m, T, α) (as above) have the form

$$P_{T^n} f = \sum_{a \in \alpha_0^{n-1}} 1_{T^n a} v'_a \cdot f \circ v_a.$$

1991 Mathematics Subject Classification. Primary: 28D05, 60B15; Secondary: 58F15, 58F19, 58F30.
©July 1999, revision 4/10/99

Typeset by AM\$-TEX
A locally invertible map \((X, \mathcal{B}, m, T, \alpha)\) has:

- the Renyi property if \(\exists C > 1\) such that \(\forall n \geq 1, a \in \alpha_0^{n-1}, m(a) > 0: \frac{|v'_a(x)|}{v'_a(y)} \leq C\) for \(m \times m\)-a.e. \((x, y) \in T^n a \times T^n a\).

It is well known (a proof is recalled in [A-D-U]) that any topologically mixing probability preserving Markov map with the Renyi property is exact in the sense that \(\bigcap_{n \geq 1} T^{-n} \mathcal{B} = \{\emptyset, X\} \mod m\).

Examples include:

- topological Markov shifts equipped with Gibbs measures ([Bo],[Bo-Ru]) and
- uniformly expanding, piecewise onto \(C^2\) interval maps \(T: [0, 1] \to [0, 1]\) satisfying Adler's condition \(\sup_{x \in [0,1]} \frac{|T''(x)|}{T'(x)^2} < \infty\) ([Ad]);

or, more generally,

- Gibbs-Markov maps as in [A-D1].

Now let \(\phi: X \to \mathbb{R}^d\) be measurable and consider the skew product \(T_\phi: X \times \mathbb{R}^d \to X \times \mathbb{R}^d\) defined by \(T_\phi(x, y) := (Tx, y + \phi(x))\) with respect to the (invariant) product measure \(m \times m_{\mathbb{R}^d}\) where \(m_{\mathbb{R}^d}\) denotes Lebesgue measure.

We say that \(\phi\) is aperiodic if \(\gamma(\phi) = z \bar{h}h \circ T\) has no nontrivial solution in \(\gamma \in \mathbb{R}^d, z \in S^1\) and \(h: X \to S^1\) measurable. It is not hard to show that if \(T_\phi\) is ergodic, and \(T\) is weakly mixing, then \(T_\phi\) is weakly mixing iff \(\phi\) is aperiodic.

We're interested in the exactness of \(T_\phi\).

We establish two (partial) results in this direction.

Theorem 1.

Suppose that \((X, \mathcal{B}, m, T, \alpha)\) is a probability preserving Markov map with the Renyi property. Let \(N \geq 1\) and \(\phi: X \to \mathbb{R}^d\) be \(\alpha_0^{N-1}\)-measurable (i.e. \(\phi(x) = \phi(\alpha_0^{N-1}(x))\) where \(x \in \alpha_0^{N-1}(x) \in \alpha_0^{N-1}\)).

If \(T_\phi\) is topologically mixing, then \(T_\phi\) is exact.

For the other result, we assume that \((X, \mathcal{B}, m, T, \alpha)\) is an exact probability preserving locally invertible map with the property that for some Banach space \((L, \| \cdot \|_L)\) of functions with \(\| \cdot \|_2 \leq \| \cdot \|_L\), such that \(P_T: L \to L\) and \(\exists M > 0, \theta \in (0, 1)\) such that

\[
\|P_T f - \int_X f dm\|_L \leq M \theta^n \|f\|_L \ \forall \ f \in L.
\]

This property can be obtained as a consequence of the quasi compactness of Doeblin-Fortet operators, see [D-F], [IT-M]).

Given \(\phi: X \to \mathbb{R}^d\) measurable, we define the characteristic function operators \(P_t(f) = P_T(e^{i(t, \phi)} f)\) (\(t \in \mathbb{R}^d\)).

We assume also that \(P_t: L \to L\) (\(t \in \mathbb{R}^d\)) and that \(t \to P_t\) is continuous (\(\mathbb{R}^d \to \text{Hom}(L, L)\)).

It is shown in [Nag] (see also theorem 4.1 of [A-D1]) that

\((i)\) there are constants \(\epsilon > 0, K > 0\) and \(\theta \in (0, 1)\); and continuous functions \(\lambda: B(0, \epsilon) \to B_C(0, 1), g: B(0, \epsilon) \to L\) such that

\[
\|P_t^n h - \lambda(t)^n g(t) \int_X h dm\|_L \leq K \theta^n \|h\|_L \ \forall \ |t| < \epsilon, \ n \geq 1, \ h \in L;
\]

and
(ii) in case \(\phi \) is aperiodic, then \(\forall \ 0 < \delta < M < \infty, \ \exists \ K > 0, \ 0 < \rho < 1 \) such that
\[
\| P^n \gamma h \|_L \leq K \rho^n \ \forall \ h \in L, \ n \geq 1, \ \delta \leq |\gamma| \leq M.
\]

Examples include:
- (see [A-D1], \((X, B, m, T, \alpha) \) a Gibbs-Markov maps and \(\phi : X \to \mathbb{R}^d \) uniformly Hölder continuous on partition sets. Here \(L \) is a space of Hölder continuous functions \(f : X \to \mathbb{C} \).
- (see [Rou], [Ry]), \(X = [0,1], \ m \text{ Lebesgue measure, } \alpha \text{ a partition of } X \mod m \) into open intervals, and \(T : a \to Ta \) an invertible, \(m \)-nonsingular homeomorphism for each \(a \in \alpha \) with \(\inf |T'| > 1 \) and \(\frac{1}{T} \) of bounded variation on \(X \); and \(\phi : X \to \mathbb{R}^d \) either: of bounded variation on \(X \); or constant on each \(a \in \alpha \).

Set \(\phi_n = \phi + \phi \circ T + \ldots + \phi \circ T^{n-1} \).

Theorem 2.

Suppose that
\[
(\diamond) \quad \forall \ \lambda > 1 \ \exists \ n_k \to \infty \text{ such that } \frac{\phi_{n_k}}{\lambda^{n_k}} \to 0 \text{ a.e. as } k \to \infty
\]
and that \(\phi \) is aperiodic;
then \(T_\phi \) is exact.

Remarks.

1) Theorem 2 generalises the corresponding theorem on page 443 in [G].
2) The condition \((\diamond) \) is satisfied if \(m \)-dist \((\phi) \) is in the domain of attraction of a stable law.
3) The condition \((\diamond) \) is not satisfied iff \(\exists \ \lambda > 1 \) and \(\epsilon > 0 \) such that \(m(|\phi_n| > \lambda^n) \geq \epsilon \ \forall \ n \geq 1 \) and there are independent processes like this.

§1 **Frobenius-Perron Operators, Exactness and Relative Exactness**

Let \((X, B, m, R) \) be a nonsingular transformation of a standard probability space. The tail \(\sigma \)-algebra of \((X, B, m, R) \) is \(T(R) := \bigcap_{n=1}^\infty R^{-n}B \) and the nonsingular transformation \(R \) is called exact if \(\{\emptyset, X\} \mod m \).

Theorem 1.1 [D-L].

\[
\| P^n R f \|_1 \to \| E(f|T(R)) \|_1 \text{ as } n \to \infty \ \forall \ f \in L^1(m).
\]

In particular (see [L]), \(R \) is exact if \(\| P^n R f \|_1 \to 0 \ \forall \ f \in L^1(m), \int_X f dm = 0. \)

Proof.

First note that \(|P_T f| \leq P_T |f| \) whence \(\| P^n R f \|_1 \downarrow \) and \(\exists \lim_{n \to \infty} \| P^n R f \|_1. \) Next, \(\forall \ n \geq 1 \ \exists \ g_n \in L^\infty(B) \) with \(\int_X (P^n R f) g_n dm = \| P^n R f \|_1, \) whence
\[
\| P^n R f \|_1 = \int_X f g_n \circ R^n dm.
\]

By weak * compactness, \(\exists \ n_k \to \infty \) and \(g \in L^\infty(B) \) such that \(g_{n_k} \circ R^{n_k} \to g \) weak * in \(L^\infty(B). \)
It follows that $g \in L^\infty(T(R))$, $\|g\|_\infty \leq 1$ and $\lim_{n \to \infty} \|P_{R^n}f\|_1 = \int_X fgdm$.

Thus
\[
\lim_{n \to \infty} \|P_{R^n}f\|_1 \leq \sup \left\{ \int_X fhdm : h \in L^\infty(T(R)), \|h\|_\infty \leq 1 \right\} = \|E(f|T(R))\|_1.
\]

To show the converse inequality, note that $\exists \ g \in L^\infty(T(R)), \|g\|_\infty = 1$ such that
\[
\|E(f|T(R))\|_1 = \int_X E(f|T(R))gdm = \int_X fgdm
\]
whence $\forall \ n \geq 1$, $\exists \ g_n \in L^\infty(B), g = g_n \circ R^n$ and
\[
\|E(f|T(R))\|_1 = \int_X fgdm = \int_X f g_n \circ R^n dm = \int_X (P_{R^n}f)g_n dm \leq \|P_{R^n}f\|_1.
\]

Let (X, B, m, R) and (Y, C, μ, S) be nonsingular transformations of standard probability spaces. A factor map is a function $\pi : X \to Y$ satisfying $\pi^{-1}C \subset B$, $\pi \circ T = S \circ \pi$, $m \circ \pi^{-1} = \mu$.

The fibre expectation of the factor map $\pi : X \to Y$ is an operator $f \mapsto E(f|\pi)$, $L^1(X, B, m) \to L^1(Y, C, \mu)$ defined by $\int_Y E(f|\pi)gd\mu = \int_X fg \circ \pi dm$.

The factor map $\pi : X \to Y$ is called relatively exact if $f \in L^1(B), \ E(f|\pi) = 0 \ a.e. \implies \|P_{R^n}f\|_1 \to 0$.

The corollary below appears in [G]. For the convenience of the reader, we supply a (possibly different) proof.

Proposition 1.2. Suppose that $\pi : X \to Y$ is relatively exact, then $T(R) = \pi^{-1}T(S) \mod m$.

Proof.

Evidently, $\pi^{-1}T(S) \subseteq T(R)$. We show that $\pi^{-1}T(S) \supseteq T(R)$.

By relative exactness and theorem 1.1, if $f \in L^1(B)$ and $E(f|\pi) = 0 \ a.e.$, then $\int_X fgdm = 0 \ \forall \ g \in L^\infty(T(R))$.

Thus if $f \in L^2(B) \ominus L^2(\pi^{-1}C)$, then $E(f|\pi) = 0 \ a.e.$ and so
\[
\int_X fgdm = 0 \ \forall \ g \in L^\infty(T(R)), \implies f \perp L^2(T(R)).
\]

Thus $L^2(B) \ominus L^2(\pi^{-1}C) \subset L^2(B) \ominus L^2(T(R))$ whence $L^2(T(R)) \subset L^2(\pi^{-1}C)$ and $T(R) \subset \pi^{-1}C \mod m$.

To see that in fact $T(R) \subseteq \pi^{-1}T(S) \mod m$, fix $N \geq 1$, then
\[
T(R) = \bigcap_{n \geq 1} R^{-n}B = \bigcap_{n \geq N+1} R^{-n}B
= R^{-N}T(R) \subset R^{-N}\pi^{-1}C = \pi^{-1}S^{-N}C.
\]

Taking the intersection over N shows the claim. \Box

Corollary 1.3 ([G], proposition 1).

If S is exact and $\pi : X \to Y$ is relatively exact, then T is exact.
For a nonsingular transformation \((X, \mathcal{B}, m, R)\), define the tail relation of \(R\):

\[\mathcal{T}(R) := \{(x, y) \in X \times X : \exists n \geq 0, R^n x = R^n y\}. \]

Evidently \(\mathcal{T}(R)\) is an equivalence relation and if \((X, \mathcal{B}, m)\) is standard, then \(\mathcal{T}(R) \in \mathcal{B}(X \times X)\).

If \(R\) is locally invertible, then \(\mathcal{T}(R)\) has countable equivalence classes and is nonsingular in the sense that \(m(\mathcal{T}(R)(A)) = 0 \forall A \in \mathcal{B}, m(A) = 0\) where \(\mathcal{T}(R)(A) := \{y \in X : \exists x \in A \ (x, y) \in \mathcal{T}(R)\}\).

A set \(A \in \mathcal{B}(X)\) is invariant under the equivalence relation \(\mathcal{T} \in \mathcal{B}(X \times X)\) if \(\mathcal{T}(A) = A\) and the equivalence relation \(\mathcal{T}\) is called ergodic if \(\mathcal{T}\)-invariant sets have either zero, or full measure.

The collection of invariant sets under \(\mathcal{T}(R)\) is the tail \(\sigma\)-algebra \(\mathcal{T}(R)\) (whence the name "tail relation").

In order to prove theorem 1, it suffices to show that \(\mathcal{T}(T^\phi)\) is ergodic.

The tail relation of \(T^\phi\) is given by

\[\mathcal{T}(T^\phi) = \{((x, s), (y, t)) \in (X \times G)^2 : \exists n \geq 0, T^n x = T^n y, s - t = \phi_n(y) - \phi_n(x)\} \]

\[= \{((x, s), (y, t)) \in (X \times G)^2 : (x, y) \in \mathcal{T}(T), \phi(x, y) = s - t\} \]

where \(\phi : \mathcal{T}(T) \to \mathbb{R}^d\) is defined by \(\phi(x, y) := \sum_{n=0}^{\infty} (\phi(T^n x) - \phi(T^n y))\).

We prove that \(\mathcal{T}(T^\phi)\) is ergodic by the method of Schmidt (explained in [S]), by showing that \(\forall t \in \mathbb{R}^d, U\) a neighbourhood of \(t\) and \(A \in \mathcal{B} m(A) > 0, \exists B \in \mathcal{B} B \subset A\) and \(\tau : B \to B\) nonsingular such that \((x, \tau(x)) \in \mathcal{T}(T)\) and \(\phi(x, \tau(x)) \in U \forall x \in B\).

This boils down to showing that

\[\forall A \in \mathcal{B}_+ g_0 \in \mathbb{R}^d \eta > 0, \exists B \in \mathcal{B}_+ B \subset A, n \geq 1 \]

\[\text{and } \tau : B \to \tau B \subset A \text{ nonsingular such that} \]

\[T^n \circ \tau \equiv T^n \text{ and } \|\phi_n \circ \tau - \phi_n - g_0\| < \eta \text{ on } B. \]

The proof of (†) will be written as a sequence of minor claims, §0, §1, . . .

§0 We first claim that there is no loss in generality in assuming that \(N = 1\) (i.e. that \(\phi : X \to \mathbb{R}^d\) is \(\alpha\)-measurable). This is because \((X, \mathcal{B}, m, T, \alpha^{N-1})\) is also a probability preserving Markov map with the Renyi property and inducing the same (shift) topology on \(X\) as \((X, \mathcal{B}, m, T, \alpha)\).

§1 \(\forall s, t \in S, \exists \kappa = \kappa_{s,t} \geq 1\) and \(a = a_{s,t} = [a_1, \ldots a_\kappa], b = b_{s,t} = [b_1, \ldots b_\kappa] \in \alpha_0^{\kappa-1}, a_1 = b_1 = s a_\kappa = b_\kappa = t\) such that \(\|\phi_{\kappa}(b) - \phi_{\kappa}(a) - g_0\| < \eta\).

This follows from topological mixing of \(T^\phi\).

By the Renyi property, \(\exists M > 1\) such that

\[M^{-1}m(u)m(v) \leq m(u \cap T^{-k}v) \leq Mm(u)m(v) \forall u \in \alpha_0^{k-1}, v \in \alpha_0^{l-1}, [v_1] \subset T[u_k]. \]
Given \(u = [u_1, \ldots, u_n] \in \alpha_0^{n-1} \) with \(u_n = t \), define \(\tau = \tau_u : u \cap T^{-n}a \to u \cap T^{-n}b \) by

\[
\tau(u_1, \ldots, u_n, a_1, \ldots a_\kappa, y) := \tau(u_1, \ldots, u_n, b_1, \ldots b_\kappa, y).
\]

\[\mu \tau = \tau \mu \] is invertible nonsingular and \(\frac{d\mu \tau}{d\mu} = M^{\pm 4} \frac{m(b)}{m(a)}. \)

Proof

\[
\int_{u \cap T^{-n}a \cap c} \frac{dm \circ \tau}{dm} dm = m(u \cap T^{-n}b \cap c)
\]

\[
= M^{\pm 2} \frac{m(b)}{m(a)} m(u) m(b) m(c)
\]

\[
= M^{\pm 4} \frac{m(b)}{m(a)} m(u \cap T^{-n}a \cap c).
\]

\[\square \]

§3 Proof of Theorem 2

We prove theorem 2 via corollary 1.3. To do this, we must consider \(T_\phi \) as a nonsingular transformation with respect to some probability \(P \sim m \times m_{\mathbb{R}^d} \).

Let \(p : \mathbb{R}^d \to \mathbb{R}_+ \) be continuous with \(\int_{\mathbb{R}^d} p(y) dy = 1 \) and define a probability \(P \) on \(X \times \mathbb{R}^d \) by \(dP(x, y) := p(y) dm(x) dy \); then \((X \times \mathbb{R}^d, B(X \times \mathbb{R}^d), P, T_\phi) \) is a nonsingular transformation with Frobenius-Perron operators given by
ON EXACT GROUP EXTENSIONS

\[P_{T^\phi} Pf(x, y) = \frac{1}{p(y)} P_{T^\phi} (f \cdot 1 \otimes p)(x, y) \]

where \(P_{T^\phi} := P_{T^\phi,m \times m_{\mathbb{R}^d}} \).

Consider the map \(\pi : X \times \mathbb{R}^d \to X \) defined by \(\pi(x, y) = x \). This is a factor map as it satisfies \(\pi^{-1}B(X) \subset B(X \times \mathbb{R}^d) \), \(\pi \circ T^\phi = T \circ \pi \), \(P \circ \pi^{-1} = m \).

The fibre expectation of \(\pi \) is given by

\[E(f|\pi)(x) = \int_{\mathbb{R}^d} f(x, y)p(y)dy \quad (f \in L^1(X \times \mathbb{R}^d, B(X \times \mathbb{R}^d), P)). \]

By corollary 1.3 and exactness of \(T \), it suffices to show that \(\pi \) is relatively exact. To do this, we show that

\[\int_{\mathbb{R}^d} f(x, y)p(y)dy = 0 \text{ a.e.} \implies \int_{X \times \mathbb{R}^d} |P_{T^\phi} Pf|dP = \int_{X \times \mathbb{R}^d} |P_{T^\phi} (f \cdot 1 \otimes p)|dm \to 0 \]

as \(n \to \infty \); equivalently (taking \(F(x, y) := f(x, y)p(y) \)),

\[\int_{\mathbb{R}^d} F(x, y)dy = 0 \text{ a.e.} \implies \int_{X \times \mathbb{R}^d} |P_{T^\phi} F|dm \to 0 \]

as \(n \to \infty \).

To prove (*), we first claim that

\[\|P_{T^\phi} (h \otimes f)\|_1 \leq C \lambda^{-\frac{n+d}{2}} \|P_{T^\phi} (h \otimes f)\|_2 + o(1) \]

as \(k \to \infty \) where \(C = 2^{\frac{d}{2}}m(B(0, 1)) \) and \(\frac{\phi_n}{\lambda^k} \to 0 \) a.e.

Proof As can be checked,

\[P_{T^\phi}(h \otimes f)(x, y) = P_{T^\phi}(h(\cdot)f(y - \phi_n(\cdot)))(x) \quad (h \in L^1(m), \ f \in L^1(\mathbb{R}^d)). \]

Denoting \(E(H) := \int_X H dm \) for \(H \in L^1(m) \), we have

\[\|P_{T^\phi} (h \otimes f)\|_1 = \int_{\mathbb{R}^d} |E(P_{T^\phi} (h(\cdot)f(y - \phi_n(\cdot)))(x))|dy \leq \int_{|y| \leq 2\lambda^k} + \int_{|y| > 2\lambda^k}. \]

By the Cauchy-Schwartz inequality,

\[\int_{|y| \leq 2\lambda^k} \leq \sqrt{m_{\mathbb{R}^d}(B(0, 2\lambda^k))}\|P_{T^\phi} (h \otimes f)\|_2 = C \lambda^{-\frac{n+d}{2}} \|P_{T^\phi} (h \otimes f)\|_2 \]

whereas
\[
\int_{|y|>2\lambda^{n_k}} \leq \int_{|y|>2\lambda^{n_k}} |E(P_{\tau^{n_k}}(h(\cdot)f(y - \phi_{n_k}(\cdot))1[|\phi_{n_k}(\cdot)| \leq \lambda^{n_k}]|)dy
+ \int_{|y|>2\lambda^{n_k}} |E(P_{\tau^{n_k}}(h(\cdot)f(y - \phi_{n_k}(\cdot))1[|\phi_{n_k}(\cdot)| > \lambda^{n_k}]|)dy = I + II.
\]

Here as \(k \to \infty:\)

\[
II \leq \|f\|_1 E(|h|1[|\phi_{n_k}(\cdot)| > \lambda^{n_k}]) \to 0
\]
since \(\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0\) a.e.; and

\[
I \leq \int_{|y|>2\lambda^{n_k}} E(|h||f(y - \phi_{n_k})|1[|\phi_{n_k}(\cdot)| \leq \lambda^{n_k}])dy = E(|h|1[|\phi_{n_k}| \leq \lambda^{n_k}]) \int_{|y|>2\lambda^{n_k}} |f(y - \phi_{n_k})|dy
\]

\[
\leq E(|h|) \int_{|y|>\lambda^{n_k}} |f(y)|dy \to 0.
\]

Substituting (3), (4) and (5) into (2) proves \(\|\|\).

To complete the proof of \((*)\), let \(F \in L^1(m \times m_{\mathbb{R}^d})\) satisfy \(\int_{\mathbb{R}^d} F(x, y)dy = 0\) for \(m\)-a.e. \(x \in X\) and fix \(\epsilon > 0\). We show that

\[
(*)_{\epsilon}
\limsup_{n \to \infty} \int_{X \times \mathbb{R}^d} |P_{\tau^n} F|d(m \times m_{\mathbb{R}^d}) < \epsilon.
\]

Standard approximation techniques show that \(\forall \epsilon > 0, \exists N \in \mathbb{N}, h_1, \ldots, h_N \in L, g_1, \ldots, g_N \in L^1(\mathbb{R}^d)\) such that \(\int_{\mathbb{R}^d} g_k(y)dy = 0\) \((1 \leq k \leq N)\) and

\[
\|F - \sum_{k=1}^N h_k \otimes g_k\|_{L^1(m \times m_{\mathbb{R}^d})} < \frac{\epsilon}{2}.
\]

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud] that

\[
\exists f_1, \ldots, f_N \in L^1 \cap L^2\] such that

\[
\bullet [f_k \neq 0] \text{ is compact and bounded away from 0} \quad (1 \leq k \leq N);\]

and

\[
\bullet \|f_k - g_k\|_{L^1(\mathbb{R}^d)} < \frac{\epsilon}{2N\|h_k\|_{L^1(m)}} \quad (1 \leq k \leq N),\]

whence

\[
\left\| \sum_{k=1}^N h_k \otimes f_k - \sum_{k=1}^N h_k \otimes g_k \right\|_{L^1(m \times m_{\mathbb{R}^d})} \leq \sum_{k=1}^N \|h_k\|_{L^1(m)} \cdot \|f_k - g_k\|_{L^1(\mathbb{R}^d)} < \frac{\epsilon}{2},
\]

\[
\left\| F - \sum_{k=1}^N h_k \otimes f_k \right\|_{L^1(m \times m_{\mathbb{R}^d})} < \epsilon
\]
where $h \in L$ and $f \in L^1 \cap L^2$ is such that $\hat{f} \neq 0$ is compact and bounded away from 0.

We claim

If $h \in L$ and $f \in L^1 \cap L^2$ is such that $\hat{f} \neq 0$ is compact and bounded away from 0, then $\exists 0 < \rho < 1$ such that

$$\|P_{T^2}(h \otimes f)\|_2 = O(\rho^n) ~ \text{as} ~ n \to \infty.$$

Proof

Let $\hat{f} \neq 0 \subset B(0, M) \setminus B(0, \delta)$. By (ii) (above), $\exists K > 0, \ 0 < \rho < 1$ such that

$$|P^n h(x)| \leq K \rho^n \quad \forall x \in X, \ n \geq 1, \ \delta \leq |\gamma| \leq M,$$

whence using the fact that the Fourier transform of $y \mapsto P^n(h \otimes f)(x, y)$ is $\gamma \mapsto \hat{f}(\gamma)P^n h(x)$ and Plancherel's formula, we have

$$\|P_{T^2}(h \otimes f)\|_2^2 = \int_X \left(\int_{\mathbb{R}^d} |P_{T^2}(h \otimes f)(x, y)|^2 dy \right) dm(x)$$

$$= \int_X \left(\int_{\mathbb{R}^d} |\hat{f}(\gamma)|^2 |P^n h(x)|^2 d\gamma \right) dm(x)$$

$$= \int_{\mathbb{R}^d} |\hat{f}(\gamma)|^2 \|P^n h\|_2^2 d\gamma \leq K^2 \rho^{2n} \int_{\mathbb{R}^d} |\hat{f}(\gamma)|^2 d\gamma$$

proving $\text{¶}2$. \qed

To finish the proof of theorem 2, we claim

$\text{¶}3$ if (6) holds for $h \in L$ and $f \in L^1 \cap L^2$, then

$$\|P_{T^2}(h \otimes f)\|_1 \to 0.$$

Proof

Fix $\lambda > 1$ such that $\lambda \frac{d}{\rho} < 1$. Suppose that $\frac{P^n \hat{f}}{\lambda^n} \to 0$ a.e.. Using (6), we have by $\text{¶}1$,

$$\|P_{T^2}(h \otimes f)\|_1 \leq C \lambda \frac{n^d}{2} \|P_{T^2}(h \otimes f)\|_2 + o(1) = O(\lambda \frac{n^d}{2} \rho^n) + o(1) \to 0$$

as $k \to \infty$; establishing (7) since $\|P_{T^2}(h \otimes f)\|_1 \downarrow$. \qed

This completes the proof of theorem 2.

References

