Rotated and scaled alamouti coding

Citation for published version (APA):

DOI:
10.1109/ISIT.2008.4595195

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Aug. 2023
Rotated and Scaled Alamouti Coding

Frans M.J. Willems
Philips Research Laboratories, High Tech Campus 37, 5656AE Eindhoven, The Netherlands

Abstract—Repetition-based retransmission is used in Alamouti-modulation [1998] for 2×2 MIMO systems. We propose to use instead of ordinary repetition so-called "scaled repetition" together with rotation. It is shown that the rotated and scaled Alamouti code has a hard-decision performance which is only slightly worse than that of the Golden code [2005], the best known 2×2 space-time code. Decoding the Golden code requires an exhaustive search over all the codewords (or sphere decoding for higher spectral efficiencies), while our rotated and scaled Alamouti code can be decoded with an acceptable complexity.

I. SCALED-REPOSITION FOR THE SISO CHANNEL

First we consider transmission over a single-input single-output (SISO) additive white Gaussian noise (AWGN) channel (see Fig. 1), and introduce scaled-repetition retransmission. It turns out that scaled-repetition improves upon ordinary-repetition retransmission.

A. Some information theory

The real-valued output y_k for transmission $k = 1, 2, \ldots, K$, see Fig. 1, satisfies

$$y_k = x_k + n_k, \quad (1)$$

where x_k is the real-valued channel input for transmission k and n_k is a real-valued Gaussian noise sample with mean $E[N_k]=0$, variance $E[N_k^2]=\sigma^2$, which is uncorrelated with all other noise samples. The transmitter power is limited, i.e. we require that $E[X_k^2] \leq P$. It is well-known that an X which is Gaussian with mean 0 and variance P achieves capacity. This basic capacity (in bit/transm.) equals

$$C = \frac{1}{2} \log_2(1 + \frac{P}{\alpha^2}). \quad (2)$$

When we retransmit (repeat) codewords, each symbol x_k from such a codeword (x_1, x_2, \ldots, x_K) is actually transmitted and received twice, i.e. $x_k1 = x_k2 = x_k$, and

$$y_k1 = x_k + n_k1, \quad \text{and} \quad y_k2 = x_k + n_k2. \quad (3)$$

An optimal receiver can form $z_k = \frac{n_k1 + n_k2}{2} = x_k + \frac{n_k1 + n_k2}{2}$. Now the variance of the noise variable $(N_k1 + N_k2)/2$ is $\sigma^2/2$. Therefore the repetition capacity for a single repetition in bit/transm. is

$$C_r = \frac{1}{4} \log_2(1 + \frac{2P}{\sigma^2}). \quad (4)$$

Fig. 1. The AWGN channel.

When we use 4-PAM modulation, the channel inputs x_k assume values from $A_{4\text{-PAM}} = \{-3, -1, +1, +3\}$, each with probability 1/4. Ordinary repetition, see (3), leads to signal points $(x_1, x_2) = (x, x)$ for $x \in A_{4\text{-PAM}}$, see the left part of Fig. 2. For this case the maximum transmission rate $I(X; Y_1, Y_2)$ is shown in Fig. 3 with blue asterisks. Note that this maximum transmission rate is slightly smaller than the corresponding capacities C_r, mainly because uniform inputs are used instead of Gaussians.

We can use Benelli’s [3] method to improve upon ordinary-repetition retransmission, i.e. by modulating the retransmitted symbol differently. We could e.g. take

$$x_{k1} = x_k, \quad \text{and} \quad x_{k2} = M_2(x_k) \quad \text{for} \quad x_k \in A_{4\text{-PAM}}. \quad (6)$$

where $M_2(\alpha) = 2\alpha - 5$ if $\alpha > 0$ and $M_2(\alpha) = 2\alpha + 5$ for $\alpha < 0$. We call this method scaled repetition since we scale a symbol by a factor (2 here) and then compensate (add -5 or +5) in order to obtain a symbol from $A_{4\text{-PAM}}$. This results in the signal points $(x, M_2(x))$ for $x \in A_{4\text{-PAM}}$, see Fig. 2, right part. Also for the scaled-repetition case the maximum transmission rate $I(X; Y_1, Y_2)$ is shown in figure 3, now with red asterisks. Note that this maximum transmission rate is only slightly smaller than the basic capacity C_r. Ordinary repetition is however definitively inferior to the basic transmission if the SNR is not very small.
Fig. 3. Basic capacity C (black curve) and repetition capacity C_r (blue) in bit/transm. as a function of SNR $= P/\sigma^2$ in dB (horizontally). Also the maximum transmission rates achievable with 4-PAM in the ordinary-repetition case (blue *'s). In red *'s the maximum rates achievable using scaled-repetition mapping.

C. Demodulation complexity

Scaled repetition outperforms ordinary repetition, but also has an disadvantage. In an ordinary-repetition system the output $y_k = (y_{k+1} + y_{k+2})/2$ is simply sliced. In a system that uses scaled repetition we can only slice after having distinguished between two cases. More precisely note that $x_{k+2} = M_2(x_k) = 2x_k - D_2(x_k)$, where $D_2(\alpha) = 5$ if $\alpha > 0$ and $D_2(\alpha) = -5$ if $\alpha < 0$. Now we can use a slicer for $y_{k+1} + 2y_{k+2} = x_k + n_{k+1} + 2(2x_k - D_2(x_k) + n_{k+2}) = 5x_k - 2D_2(x_k) + n_{k+1} + 2n_{k+2}$. Assuming that $x_k \in \{-3, -1\}$ we get that $D_2(x_k) = -5$ and this implies that we should put a threshold at 0 to distinguish between -3 and -1. Similarly assuming that $x_k \in \{+1, +3\}$ we get $D_2(x_k) = 5$ and we must slice $y_{k+1} + 2y_{k+2}$ again with a threshold at 0. Then the best overall candidate x'_k is found by minimizing $(y_{k+1} - x'_k)^2 + (y_{k+2} - M_2(x'_k))^2$ over the two candidates.

II. FUNDAMENTAL PROPERTIES FOR THE 2×2 MIMO CHANNEL

A. Model description

![Model of a 2 x 2 MIMO channel](image)

Next consider a 2×2 MIMO channel (see Fig. 4). Both the transmitter and the receiver use two antennas. The output vector (y_{k+1}, y_{k+2}) at transmission k relates to the corresponding input vector (x_{1k}, x_{2k}) as given by

$$
\begin{pmatrix}
y_{k+1} \\
y_{k+2}
\end{pmatrix} =
\begin{pmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{pmatrix}
\begin{pmatrix}
x_{1k} \\
x_{2k}
\end{pmatrix} +
\begin{pmatrix}
n_{1k} \\
n_{2k}
\end{pmatrix}
$$

(7)

where (N_{1k}, N_{2k}) is a pair of independent zero-mean circularly symmetric complex Gaussians, both having variance σ^2 (per two dimensions). Noise variable pairs in different transmissions are independent.

We assume that the four channel coefficients $h_{11}, h_{12}, h_{21},$ and h_{22} are independent zero-mean circularly symmetric complex Gaussians, each having variance 1 (per two dimensions). The channel coefficients are chosen prior to a block of K transmissions and remain constant over that block.

The complex transmitted symbols (X_{k1}, X_{k2}) must satisfy a power constraint, i.e.

$$
E[|X_{k1}X_{k1}^* + X_{k2}X_{k2}^*|] \leq P.
$$

(8)

B. Telatar capacity

If the channel input variables are independent zero-mean circularly symmetric complex Gaussians both having variance $P/2$, then the resulting mutual information (called Telatar capacity here, see [6]) is

$$
C_{\text{Telatar}}(H) = \log_2 \det(I_2 + P/2\sigma^2 HH^\dagger),
$$

(9)

where $H = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$, i.e. the actual channel-coefficient matrix and I_2 the 2×2 identity matrix. Also in the 2×2 MIMO case we define the signal-to-noise ratio as

$$
\text{SNR} \triangleq P/\sigma^2.
$$

(10)

It can be shown (see e.g. Yao ([7], p. 36) that for fixed R and SNR large enough $\Pr\{C_{\text{Telatar}}(H) < R\} \approx \gamma \cdot \text{SNR}^{-4}$, for some constant γ.

C. Worst-case error-probabilities

Consider M (one for each message) $K \times 2$ code-matrices $\Xi_1, \Xi_2, \cdots, \Xi_M$ resulting in a unit average energy code. Then Tarokh, Seshadri and Calderbank [5] showed that for large SNR

$$
\Pr\{\xi \to \xi'\} \approx \gamma'(\det((\xi - \xi')(\xi' - \xi)^\dagger)^2 \text{SNR}^{-4}.
$$

(11)

for some γ' if the rank of the difference matrices $\xi - \xi'$ is 2, and we transmit $\xi' = \sqrt{P}\xi$. This holds for all difference matrices we say that the diversity order is 4. Therefore it makes sense to maximize the minimum modulus of the determinant over all code-matrix differences.

III. ALAMOUTI: ORDINARY REPETITION

Alamouti [1] proposed a modulation scheme (space-time code) for the 2×2 MIMO channel which allows for a very simple detector. Two complex symbols s_1 and s_2 are transmitted in the first transmission (an odd transmission) and in the second transmission (the next even transmission) these symbols are more or less repeated. More precisely

$$
\begin{pmatrix}
x_{11} \\
x_{12}
\end{pmatrix} =
\begin{pmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{pmatrix}
\begin{pmatrix}
s_1 \\
s_2
\end{pmatrix} +
\begin{pmatrix}
n_{11} \\
n_{21}
\end{pmatrix},
$$

(12)

The received signal is now

$$
\begin{pmatrix}
y_{11} \\
y_{12}
\end{pmatrix} =
\begin{pmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{pmatrix}
\begin{pmatrix}
s_1 \\
s_2
\end{pmatrix} +
\begin{pmatrix}
n_{11} \\
n_{21}
\end{pmatrix},
$$

(13)
or more compactly
\[
\begin{align*}
y & = s_1 \bar{a} + s_2 \bar{b} + \bar{n}, \text{ with } \\
y & = (y_{11}, y_{21}, y_{12}, y_{22})^T, \\
a & = (h_{11}, h_{21}, h_{12}^*, h_{22}^*)^T, \\
b & = (h_{12}, h_{22}, -h_{11}, -h_{21})^T, \\
n & = (n_{11}, n_{21}, n_{12}, n_{22})^T. \\
\end{align*}
\]
Since \(a\) and \(b\) are orthogonal the symbol estimates \(\hat{s}_1\) and \(\hat{s}_2\) can be determined by simply slicing \((\bar{a}^HY)/(\bar{a}^H\bar{a})\) and \((\bar{b}^HY)/(\bar{b}^H\bar{b})\) respectively.

Another advantage of the Alamouti method is that the densities of \(\bar{a}^HY\) and \(\bar{b}^HY\) are (identical and) chi-square with 8 degrees of freedom. This results in a diversity order 4, i.e.
\[
\Pr \{ (S_1, S_2) \neq (S_1, S_2) \} \approx \gamma'' \cdot \text{SNR}^{-4},
\]
for fixed rate and large enough SNR.

A disadvantage of the Alamouti method is that only two complex symbols are transmitted every two transmissions, but more importantly that the symbols transmitted in the second transmission are more or less repetitions of the symbols in the first transmission. Section I however suggests that we can improve upon ordinary repetition.

IV. THE ROTATED AND SCALED ALAMOUTI METHOD

A. Method description

Having seen in section I that scaled-repetition improves upon ordinary repetition in the SISO case, we use this concept to improve upon the standard Alamouti scheme for MIMO transmission. Instead of just repeating the symbols in the second transmission we scale them. More precisely, when \(s_1\) and \(s_2\) are elements of \(A_{16-QAM} = \{a + jb|a \in A_{4-PAM}, b \in A_{4-PAM}\}\), we could transmit for some value of \(\theta\) the signals
\[
\begin{align*}
x_{11} & = s_1 \cdot \exp(j\theta) - s_2^* \\
x_{12} & = s_1 \cdot \exp(j\theta) - s_2^* \\
x_{21} & = 2s_2 \\
x_{22} & = 2s_1 \\
\end{align*}
\]
(16)
where \(M_2(\alpha) = 2\alpha - D_2(\alpha)\) with \(D_2(\alpha) = 5\beta\) when \(\beta\) is the complex sign of \(\alpha\).

A first question is to determine a good value for \(\theta\). Therefore we determine for \(0 \leq \theta \leq \pi/2\) the minimum modulus of the determinant \(\text{mindet}(\theta)\)
\[
\text{mindet}(\theta) = \min_{(s_1, s_2), (s_1', s_2')} |\det(X(s_1, s_2, \theta) - X(s_1', s_2', \theta))|.
\]
where \(X = \begin{pmatrix} x_{11} & x_{12} \\
x_{21} & x_{22} \end{pmatrix} \) is the code matrix. The minimum modulus of the determinant as a function of \(\theta\) can be found in Fig. 5. The maximum value of the minimum determinant (i.e. 7.613) occurs for
\[
\theta_{opt} = 1.028.
\]
We will use this value for \(\theta\) in what follows.

B. Hard-decision Performance

We have compared the message-error-rate for several \(R = 4\) space-time codes in Fig. 6. By message-error-rate we mean the probability \(\Pr \{ \hat{X} \neq X \} \). Note that for each "test" we generate a new message (8-bit) and a new channel matrix. The decoder is optimal for all codes, it performs \(ML\)-decoding (exhaustive search). The methods that we have considered are:

1) Uncoded, in green. We transmit
\[
\begin{pmatrix} x_{11} & x_{12} \\
x_{21} & x_{22} \end{pmatrix}
\]
(19)
where \(x_{11}, x_{12}, x_{21},\) and \(x_{22}\) are symbols from \(A_{16-QAM}\).

2) Alamouti, in blue, see (12), where \(s_1\) and \(s_2\) are symbols from \(A_{16-QAM}\).

3) Tilted QAM, in cyan. Proposed by Yao and Wornell [8]. Let \(s_a, s_b, s_c,\) and \(s_d\) symbols from \(A_{4-QAM}\). Then we transmit
\[
\begin{align*}
x_{11} & = \cos(\theta_1) - \sin(\theta_1) \rightleftharpoons s_a \\
x_{12} & = \cos(\theta_2) - \sin(\theta_2) \rightleftharpoons s_c \\
x_{21} & = \cos(\theta_1) - \sin(\theta_1) \rightleftharpoons s_b \\
x_{22} & = \cos(\theta_2) - \sin(\theta_2) \rightleftharpoons s_d \\
\end{align*}
\]
(20)
for \(\theta_1 = \frac{1}{2} \arctan(\frac{1}{2})\) and \(\theta_2 = \frac{1}{2} \arctan(2)\).

4) Rotated and scaled Alamouti, in red, see (16) for \(\theta = 1.028\), and with \(s_1\) and \(s_2\) from \(A_{16-QAM}\).

5) Golden code, in magenta. Proposed by Belfiore et al. [2]. Now
\[
X = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha(z_1 + z_2) & \alpha(z_3 + z_4) \\
\alpha(z_1 + z_2) & \alpha(z_3 + z_4) \end{pmatrix},
\]
(21)
where \(\alpha = 1 + j - j\theta\), and \(\alpha = 1 + j - j\theta\) and where \(z_1, z_2, z_3,\) and \(z_4\) are \(A_{4-QAM}\)-symbols.

6) Telatar, in black. This is the probability that the Telatar capacity of the channel is smaller than 4.

Clearly it follows from Fig. 6 that the winner is the Golden code. However rotated and scaled Alamouti is only slightly worse, roughly 0.2 dB. Important is that Alamouti coding is roughly 2 dB worse than the Golden code.
we rewrite (16) and obtain
\[
\begin{pmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{pmatrix}
= \begin{pmatrix}
 -M_2(t_1) & M_2(t_2) \\
 t_2 & t_1
\end{pmatrix}
= \begin{pmatrix}
 -2t_1 & 2t_1^* \\
 t_2 & t_1^*
\end{pmatrix}
= \begin{pmatrix}
 -D_2(t_1) & D_2(t_2) \\
 0 & 0
\end{pmatrix},
\]

since \(t = M_2(s) \) implies that \(s = -M_2(t) \). Now
\[
\begin{pmatrix}
 y_{11} \\
 y_{21} \\
 y_{12} \\
 y_{22}
\end{pmatrix}
= \begin{pmatrix}
 -2h_{11} & h_{12} \\
 -2h_{21} & h_{22}
\end{pmatrix}
\begin{pmatrix}
 h_{12}^* & h_{12} \\
 h_{22}^* & h_{22}
\end{pmatrix}
(t_1 \\
 t_2)
- \begin{pmatrix}
 -h_{11} & h_{12} \\
 -h_{21} & h_{22}
\end{pmatrix}
D_2(t_1) - \begin{pmatrix}
 0 & h_{11} \\
 0 & h_{22}
\end{pmatrix}
D_2(t_2) + \begin{pmatrix}
 n_{11} \\
 n_{21} \\
 n_{12} \\
 n_{22}
\end{pmatrix}.
\]

We can write this as
\[
y = t_1 a' + t_2 b' - D_2(t_1) c' - D_2(t_2) d' + n,
\]
\[
a' = (-2h_{11}, -2h_{21}, h_{12}, h_{22})^T,
\]
\[
b' = (h_{11}, h_{22}, 2h_{12}, 2h_{22})^T,
\]
\[
c' = (-h_{11}, -h_{21}, 0, 0)^T,
\]
\[
d' = (0, 0, h_{11}, h_{22})^T,
\]
and for the "\(\cos(\phi') \)" of the angle between \(a' \) and \(b' \) we can write
\[
\cos(\phi') = \frac{|2(\Theta - 1)(h_{11}^2 + h_{21}h_{22})|}{4|h_{11}|^2 + 4|h_{21}|^2 + |h_{12}|^2 + |h_{22}|^2}.
\]

C. It now follows from the inequality \(2r_1 r_2 \leq r_1^2 + r_2^2 \) (where \(r_1 \) and \(r_2 \) are reals), that
\[
\cos(\phi) \leq |\Theta - 1| \cdot \frac{|h_{11}|^2 + |h_{12}|^2 + |h_{21}|^2 + |h_{22}|^2}{|h_{11}^2| + |h_{21}|^2 + 4|h_{12}|^2 + 4|h_{22}|^2},
\]
\[
\cos(\phi') \leq |\Theta - 1| \cdot \frac{|h_{11}|^2 + |h_{12}|^2 + |h_{21}|^2 + |h_{22}|^2}{4|h_{11}|^2 + 4|h_{12}|^2 + |h_{21}|^2 + |h_{22}|^2}.
\]
If
\[
|h_{12}|^2 + |h_{22}|^2 \geq |h_{11}|^2 + |h_{21}|^2,
\]
then \(\cos(\phi) \leq \frac{|\Theta - 1|}{5} = 0.393 \), else \(\cos(\phi') \leq \frac{|\Theta - 1|}{5} = 0.393 \). Therefore it makes sense to decode \((s_1, s_2) \) when (28) holds and \((t_1, t_2) \) when (28) does not hold. Using zero-forcing to decode, the noise enhancement is then at most \(1/(1 - 0.393^2) = 1.183 \) which is 0.729 dB. We shall see later that noise enhancement is un-noticeable in practise.

D. The decoding procedure is straightforward. Focus on the case where we decode \((s_1, s_2) \) for a moment. For all 16 alternatives of \((D_2(s_1), D_2(s_2)) \) the vector
\[
\hat{z} = y + D_2(s_1)c + D_2(s_2)d = s_1 a + s_2 b + n
\]
and is determined. Then compute the sufficient statistic
\[
\begin{pmatrix}
 a^T \hat{z} \\
 b^T \hat{z}
\end{pmatrix} = \begin{pmatrix}
 a^T a & a^T b \\
 b^T a & b^T b
\end{pmatrix} \begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix} + \begin{pmatrix}
 a^T \hat{u} \\
 b^T \hat{u}
\end{pmatrix}.
\]
Use inverted matrix $M = \begin{pmatrix} b_1^1 & b_2^1 & -a_1^1 b_2^1 \\ b_1^2 & b_2^2 & -a_1^2 b_2^2 \\ a_1^2 b_1^1 & a_1^2 b_2^1 & a_1^2 a_2 \\ \end{pmatrix} / D$ where $D = (a_1^1 a_1^2 b_1^2 b_2^1 - (b_1^1 b_2^2 a_1^2 b_2^1 - (b_1^1 a_1^2 b_2^2))$ to obtain $\begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = M \begin{pmatrix} a_1^2 z \\ b_1^2 z \\ \end{pmatrix}$. Next both s_1 and s_2 are sliced under the restriction that only alternatives that match the assumed values $D_2(s_1)$ and $D_2(s_2)$ are possible outcomes. This is done for all 16 alternatives $(D_2(s_1), D_2(s_2))$. The best result in terms of Euclidean distance is now chosen.

In considering all alternatives $(D_2(s_1), D_2(s_2))$ we only need to slice when the length of $z - s_1 a_1 - s_2 b_1$ is smaller than the closest distance we have observed so far. This reduces the number of slicing steps. We call this approach METHOD 1.

E. The number of slicing steps can even be further decreased if we start slicing with the most promising alternative $(D_2(s_1), D_2(s_2))$. This approach is called METHOD 2. Therefore we note that the “direct” s_1-signal-component in X is $\begin{pmatrix} s_1 \Theta \\ 0 \\ 0 \end{pmatrix} / -s_1^2 / 2$. Therefore we can slice $(e_1^2 y) / (e_1^2 e_2)$ in order to find a good guess for $D_2(s_1)$. Similarly we slice $(e_2^1 y) / (e_1^2 e_2)$ to find a good first guess for $D_2(s_2)$. Here

$e_1 = \begin{pmatrix} h_{11} \Theta, h_{21} \Theta, -h_{12}^* / 2, -h_{22}^* / 2 \end{pmatrix}^T$,
$e_2 = \begin{pmatrix} -h_{12} / 2, -h_{22} / 2, -h_{11}, -h_{21}^* \end{pmatrix}^T$.

(31)

Then we consider the other 15 alternatives and only slice if necessary. Similar methods apply if we want to decode (t_1, t_2).

F. We have carried out simulations, first to find out what the degradation of the suboptimal decoders according to method 1 and method 2 is relative to ML-decoding. The result is shown in Fig. 7. Conclusion is that the suboptimal decoders do not demonstrate a performance degradation. We have also considered the number of slicings for both method 1 and method 2. This is shown in Fig. 8. It can be observed that method 1 leads to roughly 7 slicings (as opposed to 16). Method 1 further decreases the number of slicing to roughly 3.5.

VI. CONCLUSION

Rotated and scaled Alamouti has a hard-decision performance which is only slightly worse than that of the Golden code, but can be decoded with an acceptable complexity. We have obtained similar results for codes based on mapping $M_3(\cdot)$ for 9-PAM, see Fig. 9. Recently also Sezginer and Sari [4] investigated complexity reducing methods for alternatives to the Golden code.

REFERENCES