Data-aided single-carrier coherent receivers

Citation for published version (APA):

DOI:
10.1109/LEOS.2009.5343409

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. Feb. 2019
Data-Aided Single-Carrier Coherent Receivers

Maxim Kuschnerov\(^{(1)}\), Kittipong Piyawanno\(^{(1)}\), Erik De Man\(^{(2)}\), Mohamed Chouayakh\(^{(1)}\), Bernhard Spinnler\(^{(2)}\), Mohammad Alfiad\(^{(3)}\), Antonio Napoli\(^{(2)}\), Berthold Lankl\(^{(1)}\)

\(^{(1)}\) University of the Federal Armed Forces Munich, Germany, maxim.kuschnerov@unibw.de
\(^{(2)}\) Nokia Siemens Networks GmbH & Co. KG, Munich, Germany, bernhard.spinnler@nsn.com
\(^{(3)}\) COBRA institute, Eindhoven University of Technology, The Netherlands, m.s.alfiad@tue.nl

Abstract Data-aided algorithms for coherent optic receivers are discussed as an extension of existing non-data aided methods. The concept presents a scalable approach with low implementation complexity and limited overhead for higher-order modulation formats.

Introduction

The first generation of resurgent 40G and 100G coherent systems was dominated by single-carrier polarization-multiplexed (PolMux) QPSK\(^{1,2}\). The estimation of channel and synchronization parameters was typically done without the use of known sequences (non-data aided, NDA), solely relying on the statistical signal properties of the signal\(^{2}\). Future 400G or 1T systems will require higher-order modulation, where blind estimation algorithms do not necessarily offer the best solution. For initial channel acquisition, the constant-modulus algorithm (CMA) can still be applied to QAM\(^{3}\). However, it is clearly suboptimal, with a decreased adaptation speed and higher bit-error rate (BER) before switching to decision-directed (DD) algorithms. Furthermore, blind demultiplexing can become increasingly complex in presence of polarization-dependent loss (PDL)\(^{4}\).

Data-aided (DA) algorithms offer fast acquisition, better estimation performance at a low BER, and scalability for next generation coherent systems\(^{5}\). In order to decrease the overhead defined by the training sequence length and its repetition rate, a semi-blind approach can be introduced as shown in Fig. 1. After initial convergence, with a data-aided acquisition of the frequency offset and the equalizer taps, the receiver continues to track in NDA mode e.g. using the least-mean square (LMS) algorithm\(^{6}\) in combination with a DD feedback carrier phase recovery. In the case of optically uncompensated links, chromatic dispersion (CD) is compensated using blind estimation\(^{7}\), in order to keep the resulting training sequence short.

Fig. 1: Data-aided receiver with blind tracking

MMSE vs. LMS

Equalizer coefficients can e.g. be computed using the minimum-mean square error solution (MMSE)\(^{6}\), which is optimal for linear equalizers, or with a stochastic gradient algorithm like the LMS. Fig. 2(a) compares the adaptation complexity of the MMSE and the LMS per parallelization path. Here, the complexity of the LMS can be significantly reduced using the sign-update\(^{6}\), with only two complex multiplications required for the correction of the feedback carrier phase. Furthermore, it is assumed that the MMSE is implemented only once and not in every parallelization path, since the computation of the equalizer coefficients has to be processed for the training sequence only. Fig. 2(b) shows an adaptation speed comparison of the MMSE and LMS. Here, polyphase sequences\(^{8}\) were used for the MMSE to give optimum acquisition speed, while the LMS was adapted in a DD-mode with known symbol decisions in a serial implementation with no additional delay. While the MMSE achieves virtually instantaneous acquisition, the LMS has a clearly longer adaptation time, with the LMS solution approaching MMSE for a large number of training symbols. 112Gbit/s PolMux-16QAM and 13 tap FIR T/2-spaced filtering are exemplary assumed.

Parallelized LMS adaptation

Despite the limited adaptation speed, the LMS has a clear advantage over the MMSE in terms of complexity. Since the acquisition time constraint in fiber optic transmission is less critical, the following analysis is based on the LMS. Fig. 3 shows a simplified parallelized design of a finite-impulse response (FIR) filter with feedback update. A binary PN-sequence is used as training sequence. Despite the non-ideal autocorrelation properties compared to polyphase sequences, the modulation and possible cross-correlation are significantly simplified. For each training sequence, the equalizer update is computed separately for each parallelization path and then summed up. It is assumed that the feedback delay is shorter than the spacing between two training sequences, so that the equalizer taps
training sequences, as in orthogonal frequency-division multiplexing (OFDM) synchronization of the carrier phase. The frequency offset can be estimated using two subsequent training sequences, as in orthogonal frequency-division multiplexing (OFDM). The frequency offset can be estimated using two subsequent training sequences, as in orthogonal frequency-division multiplexing (OFDM).

\begin{equation}
\hat{\nu}_{\nu} = \frac{1}{T_s} \text{arg} \left\{ \sum_{k=1}^{L} r[k + L] \cdot r^*[k] \right\}
\end{equation}

where \(r[k] \) is the received symbol at instant \(k \), \(T_s \) is the symbol duration, and \(L \) is the length of the single training sequence. While short training sequences increase the frequency acquisition range, the estimation error can be minimized using long sequences. In order to keep the overhead minimal, the frequency offset can be estimated in two steps. After an initial estimate, (1) can be applied to two subsequent headers. Here, the maximum spacing between two headers is limited by the frequency acquisition range that is defined by the estimation precision of the initial computation. For the given example, an overhead in the range of 3–4% can be realized.

Framing and timing synchronization algorithms depend on the amount of residual distortion in the channel, where a higher tolerance usually is desired. Framing can e.g. be performed using an OFDM method, detecting the maximum of the estimator given by

\begin{equation}
M[k] = \left| \sum_{k=1}^{L} r[k + L] \cdot r^*[k] \right|^2 .
\end{equation}

During equalizer convergence, a certain timing frequency offset can be tolerated, so that the timing phase error can be corrected after the convergence of the equalizer. In presence of high CD, the equalizer taps can be used for precise timing phase recovery. For the x-polarization, the timing phase error estimator is given by

\begin{equation}
\beta_x[k] = \beta_x \cdot [k] + \beta_{xx} \cdot [k],
\end{equation}

with

\begin{equation}
\beta_{xx}[k] = - \sum_{i=1}^{M-1} w_{xx} |z[i]|^2 + \sum_{i=M+1}^{N_{max}} w_{xx} |z[i]|^2 ,
\end{equation}

where \(w_{ij} \) are the filter coefficients and \(M \) is the central tap of the filter. Instead of the equalizer taps, the channel estimate can also be used, given by the cross-correlation of the transmitted and received training sequences.

Conclusion

A data-aided receiver concept for higher-order modulation formats was discussed as an extension of typical blind receivers based on CMA/LMS. Filter coefficient adaptation can be implemented using LMS with low complexity assuming a prior correction of synchronization parameters. Blind tracking of channel and synchronization parameters is required in order to keep the overhead acceptably low.

References