Application of the improved factor method to the environmental impact assessment of buildings

Citation for published version (APA):

Document status and date:
Published: 01/01/2004

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
APPLICATION OF THE IMPROVED FACTOR METHOD TO THE ENVIRONMENTAL IMPACT ASSESSMENT OF BUILDINGS

1Eindhoven University of Technology, Department of Building and Architecture, Knowledge Centre Building and Systems
PO Box 513, 5600 MB Eindhoven, The Netherlands
2BDA Group, Gorinchem, The Netherlands

1. Introduction

By defining the role of service life within a LCA and indicating what can be achieved by a sound service life prediction, the environmental assessment of buildings can be more accurate. Aspects that will be looked at are the fixed service life within the current assessments, the different phases within service life and the rate of replacement of components. A description is given of preliminary results of research undertaken to develop a life cycle assessment method specifically for “flexible” buildings. This paper describes different aspects of the way to execute such an environmental calculation. The link between environmental load and the building sector is elaborated and emphasis is placed on the differences between the environmental load in the building sector and other sectors. Certain aspects related to environmental calculations are important when determining the environmental load of a building are reviewed and further illustrated using three examples of LCA for a building. The use of the factor method is described when undertaking environmental calculations and additional information is given for enhanced calculations suggesting that the proposed changes make LCA calculations in the building sector more accurate.

2. Building and the environment

2.1. Environmental load

Every material has an effect on the environment. Extracting raw materials, transporting them to a factory, producing the product, assembling it in the project, dismounting, disposal and so on. If we know that building is an ongoing process and that this ongoing process will keep on putting a strain on the environment the current situation is evident. The goal for the building sector is to minimise the load on the environment caused by construction. This is one of the fields where the Kyoto protocol has had some influence on.

The Kyoto protocol however only mentions the exhaust of CO\textsubscript{2} equivalents. There are quite a few additional environmental aspects. Different methods are available and they discern different environmental aspects. Common aspects are ozone depletion, exhaustion of raw materials, human toxicity, eco-toxicity, global warming, acidification and so on. The literature
[1] provides descriptions of the various methods and the corresponding environmental aspects for environmental calculation. Every part of society causes an environmental load. Solutions for each of them are possible but the building sector has some aspects that are specific for this sector and need particular attention.

2.2. Environmental load and the building sector

The environmental load caused by building (construction) has some aspects that differ from environmental load in general. Klunder [2] mentions the three main environmental effects of building to be caused by material flow, energy and water. This study reached a conclusion that the aspect related to water to be less important; hence from this it follows that energy and materials are the most important. The average weight of a European building is about 100 ton. That is 100 ton of materials used in construction, but also (after the period is over) to be discarded. It is therefore not surprising to see that solid waste is responsible for a large part of the environmental load in building. As an example, in the Netherlands in 2001 a waste stream of 19550 kton was produced, compared to 12680 kton in 1990 representing an increase of 54% in 10 years [3]. The other effect is the energy use during the service life of the building, but this study is limited to the material aspects within environmental assessments. However the existing methods for calculating the environmental load (of the materials) are not developed for the building sector and cannot cope with the long total service life of a building.

2.3. Application of environmental load calculation

The environmental load can be calculated with the use of a Life Cycle Assessment (LCA) programmes. Examples of these programs are Sima Pro, Eco Quantum (NL), Envest (UK) and OGIP (CH). In this article some particular aspects of these calculations will be discussed. To get a better hold of the calculation the layout of LCA is given in Figure 1. This layout is according to the ISO 14000 standard [4]. A LCA consists of a goal and scope phase in which the aim is set. In the inventory analysis the building is looked at closely to determine the amount of materials. It is in this phase that the input for a LCA is retrieved. The third phase is the impact assessment. The materials from the inventory phase are calculated into the environmental load. In all these three phases the interpretation of the effects is of importance: how are these effects when compared to other situations.
The way of using LCA can influence the interpretation. According to Guinée et al. [5] there are six different objectives to using LCA:

- Exploration of options
- Company internal innovation
- Sector driven innovation
- Strategy determination
- Comparison (i.e. legislation)
- Comparative assertion disclosed to the public

Looking at the construction sector, the sector driven innovation, strategy determination and comparison are the most important reasons to conduct LCA. Special attention must be given to the possibility of comparison. This stands for comparison between products as well as the checking to legislation. Some countries are considering an obligatory environmental standard that for every (new) building has to be met. However at this moment the calculation according to such a standard will raise some problems because of a lack of consistency in its application (this will be discussed in section 4).

A calculated comparison between environmental loads makes it possible to vary in materials or design solutions and see the results of the variations. An optimisation of the load with the specific design is possible. The question is whether such an optimisation should be legislation, a kind of trademark or just a voluntary aspect? In case it becomes legislation, it has to be applicable for all buildings and no blanks or errors can be allowed in the method. This can be difficult because no general agreement has been reached on the calculation methods. When it is used as a trademark or even voluntary then some remarks or comments can be made. Then it can be used as a quality mark rather than an obligatory item.
3. The role of service life prediction in LCA

3.1. Characterisation

The common Life Cycle Assessment methodology is material based. The general thought is that when more materials are used in a building, the higher the strain on the environment will be. This is not completely true, the kind of material and the accompanying processes are of importance too. Each material (or process) has emissions to one (or more) environmental aspect(s), and each environmental aspect can be measured by an amount of equivalents. So for each emission there are factors to convert emissions into equivalents. An example: for the environmental effect of ‘greenhouse’ gases, the CO$_2$-equivalents are normative. CO$_2$ is chosen to be leading indicator and as a consequence 1 kg CO$_2$ has the equivalent of 1. Another substance, CFC-13 has a characterisation factor of 13000. This means that 1 kg CFC-13 causes 13000 times more pollution than 1 kg CO$_2$. Turning it the other way, 77 mg CFC-13 is as polluting as 1 kg CO$_2$. This step is called characterisation. This example shows that just a fraction of some material can cause a huge impact on the environmental load when performing an LCA. This is the reason why in a LCA, the inventory phase is crucial. Incorrect data about materials can cause a lack of information or a redundancy of information.

3.2. Replacements

In section 2.3 the structure of a LCA is explained. The inventory analysis is the phase in which data about the amount of materials is retrieved. Within the building sector the total service life of a building is often set at 75 years. In these 75 years materials have to be maintained and/or even replaced. The question is: what is the service life of a component? This is significant because this establishes how many replacements have to take place, and consequently the total quantity of materials used throughout the overall service life of the building. A building that is well maintained with limited use will last longer than a building with a lot of activity. An example: a simple interior door of a family dwelling has a Reference Service Life of Component (RSLC) of 25 years [6,7]. With a total service life of 75 years, the initial door and two replacements is the average situation. But imagine whether a family will use this door with two little children. The in-use conditions are much higher and the demands for replacements are larger as well. It is possible that the RSLC of 25 years will not be met and that 20 years is the maximum period (Estimated Service Life of Components, ESLC). More doors will be needed and the amount of materials used in the building is raised. Because the amount of materials is higher (inventory analysis) the impact assessment changes as well. Figure 2 shows the differences in output for a 20-year RSLC and a 25-year RSLC. The dark bars represent a service life of component of 20 years. The light bars represent a service life of a component of 25 year. The overall service life of the building is 75 years. Combined with the characterisation as mentioned in 3.1 the influence of the amount of materials and consequently the environmental strain becomes increasingly evident.
3.3. Three kinds of service life

The service life of a product will end at the moment the product reaches its End Of Life (EOL).
There are many ways in which a product can reach its EOL. Van Nes et al. [8] mention up to six different ways of obsolescence for consumer products (technical, economical, ecological, esthetical, functional and psychological). In the ISO standards [9] three kind of EOL for the building sector are discerned. Concentrating on the building sector the following three EOL scenarios will be distinguished: technical, economical and functional EOL. The best-known type (and most easy to comprehend) is the technical service life. When looking at the reference service life published by SBR [6], it is the technical service life that is displayed. This is because for centuries this was the aspect that determined the replacement. However, looking at Figure 3 technical service life will in (most cases) last longer and be leading. The technical service life is over when the component can no longer fulfil the performance it needs to (i.e. a leaking roof, a broken window). Another type of EOL is the economical EOL. This occurs when another component can fulfil the same (or better) function but with lesser costs. (i.e. central heating system, maintenance). In this case the economical criteria are indicative. The EOL that probably occurs first is the functional End Of Life. This occurs when the component does not fulfil the function people demand of the component. In this case the functional criteria can be a very wide range: the door doesn’t open any more, the living room isn’t large enough or the colour of the tiles does not please the user anymore. These three EOL’s define the moment that a component will be replaced. Regarding the three EOL’s the following can be concluded: at his moment it is no longer the product that indicates the end of (technical) service life of a product, but it is the occupant who decides that the (functional) service life of the product is over, so functional obsolescence is normative.

3.4. Summary

The outcome of LCA depends highly on the reliability of the input. To obtain a LCA that is as accurate as possible the input must be close to the actual situation. The aspect that is most important in this case is the service life. At this moment most assessment methods that are carried out regard the service life as a fixed item. As a consequence the outcome of the LCA will differ from the actual situation. In the example of the interior door, used by a family with children, the average LCA will be based on a RSLC of 25 years, although it is known that the actual service life is 20 years (Figure 2). To calculate an accurate LCA the inventory phase is crucial. Key issue in LCA is service life prediction. If the ESLC is known, the exact amount of material used throughout the overall service life is known as well. With the amount of material known, the assessment is more correct than most LCA’s, and a better judgement can be made.

4. Current problems in LCA

The previous section describes LCA and the importance of correct inventory analysis. Within LCA in the building sector there are some irregularities that can cause problems when performing calculations. In a previous paper [10] three problems are discussed:

1. Premature replacement; replacing products before it is a technical necessity;
2. Sequential use; replacement of (identical) products within the overall service life of the building;
3. Subdivision of environmental load; regarding environmental load as a linear process, instead of dividing it in different phases.
The first problem is already described in paragraph 3.4. In a LCA it is in most cases the technical service life that is normative for the calculations. Increasingly the economic and functional criteria are decisive for the replacement. Using only the technical service life in a LCA has a positive effect on the outcome of the LCA, because components in the calculation are supposed to have a longer service life than the actual situation. Calculating the full technical service life, fewer replacements will take place and the calculated results will be less than the actual environmental strain (figure 4).

![Figure 4. Environmental load divided in assembling use and dismounting.](image)

The replacement criteria (Functional (Fc), Economical (Ec) and Technical (Tc)) are shown as well. The figure shows that the total environmental load is hardly increased by a substantial increase of the service life.

Sequential use is the second problem and follows on the premature replacement. The LCA tool has not been designed for the building sector; it is more aimed at consumer goods. Looking at consumer goods replacements are not that big an issue and often not taken into account. Because of the long service life of a building, the replacement of components in a building is important. During the overall service life, several replacements have to take place. Given that the actual spread of service lives is not known, an assumption (as accurate as possible) has to be made in regard to a bandwidth, from which may vary the amount of material required.

The third aspect is the subdivision of the environmental load. There is a relation between the environmental load of a component and time [11]. Three different phases can be distinguished: assembling, use and dismounting. Assembling a building will have a relative high level of environmental load, partly because of the production of materials. In the use
phase the environmental load will only slightly increase because of maintenance (energy consumption by habitants is not taken into account). The last phase is dismounting and there the waste creates the highest strain. In figure 5 this subdivision is illustrated. In the use phase the increase of environmental load is small compared to the prolonged service life. In the example this is shown by the light coloured graph. When prolonging the service life the average environmental load will decrease. However, in most current LCA programs the environmental load is regarded as a linear process (figure 5). If the environmental load is regarded to be linear, prolonging the service life will cause this process to continue. The environmental load will increase in time. In the actual situation, the environmental load during the period of use will rise slightly, perhaps some maintenance, the rest (dismounting) will not increase.

![Figure 5. Prolonging service life will only increase the environmental load to a limited extend.](image)

The actual environmental load will not increase as much as most programs calculate at this moment. As a consequence the calculated load (current methods) is higher than the actual load (prolonged actual situation). This is shown in figure 5.

5. Factor method

5.1 Goal within LCA

To get a better grip on LCA there has to be more information on the service life of products. Service life prediction originates in the 50’s when the first experiments with cyclical loads
were done. Later on these tests were elaborated. In the 90’s service life prediction became an expertise and guides and standards were developed. Even now a combined task group (CIB W80/RILEM 175-SLM [12]) is studying service life prediction. Three different approaches are followed. First of all the research of the probabilistic design, second the so-called engineering methods and third the deterministic approach. The last approach is the simplest way to define the service life and therefore the deterministic methods are being studied. Defining the service life is an important part of LCA and an easy to use method must be available. Because buildings are not the same everywhere service life prediction varies from locations to location. In Japan a method to calculate a more specific method for service life planning was developed: The Factor Method [9].

5.2 Factor method

The factor method is a way to include several factors that influence the service life and come to a better estimated service life [13]. This method is described in an international standard ISO 15686 [9] At this moment parts 1, 2 and 3 are out, and parts 4 to 6 are to be published. The factor method consists of a RSLC and different factors (for different aspects mentioned below). The reference service life will be multiplied by the factors, some positive, others negative. The outcome is an ESLC, a specific service life for the given situation and product. The Factor Method uses seven factors to compensate for specific situations. The formula for the factor method is:

\[
ESLC = RSLC \times \text{factor } A \times \text{factor } B \times \text{factor } C \times \text{factor } D \times \text{factor } E \times \text{factor } F \times \text{factor } G
\]

Where:

- E SL C = Estimated Service Life of Components [year]
- R SL C = Reference Service Life of Components [year]
- A = Quality of the component [-]
- B = Design level [-]
- C = Work execution level [-]
- D = Indoor environment [-]
- E = Outdoor environment [-]
- F = In-use conditions [-]
- G = Maintenance level [-]

For each factor a value must be used whereas the mean is 1.0. An example: a product consists of high quality raw materials it will be more resistant to influences from the outside. In order to award the better quality, factor A (quality of the component) will be 1.2 instead of 1.0. Another example can be the location of the building. With a building near to the sea the outdoor environment (factor E) will be more severe than the average outdoor environment. Factor E will become lower than 1.0, for example 0.8. When these factors and the reference service life are all multiplied a specific service life, more accurate for the specific situation can be predicted:

\[
ESLC = 25 \times 1.2 \times 1.0 \times 1.0 \times 1.0 \times 0.8 \times 1.0 \times 1.0 = 25 \times 0.96 = 24
\]

The RSLC is 25 year, but when the quality (A) and the outdoor environment (E) are taken into account the E SL C is 24 year.
5.3 Adding factors

The Factor Method consists mainly of indicators for the technical service life. In section 3.4 two other criteria are mentioned: functional and economical criteria. To include these criteria Van Nunen et al. [14] propose to add two factors: Trends and Related components. With the Trend factor (T), the likelihood of a component to conduct changes not indicated by the designed service life is taken into account. The sensitivity to (fashion) trends will reduce the functional service life of the component. This indicates a replacement before the technical service life is over.

Looking at the Related components factor (R), two aspects are considered. The first one is the accessibility of a product to be replaced. When a wall panel can be replaced by just clicking four pins it will be done with much more ease than in a situation where a lot of nails and cement have to be removed. The first situation causes much less trouble and therefore will occur more often. As a consequence, the service life will be short. The second aspect is in combination with the replacement of components. When a single component has to be replaced, it sometimes is easier to replace a complete building part, although the service life is not yet completed. An example is a window frame. When the frame has to be replaced, in most cases the glass will be replaced as well, although it is not necessary in functional or technical way. Both factors trends and related components are not mentioned in the ISO standard. Adding these two factors will bring the ESLC closer to the actual service life and not only representative for the technical service life. Therefore it could be called the Improved Factor Method.

5.4 Distribution in the (Improved) Factor Method

To come to a service life prediction that is even more accurate the (Improved) Factor Method can be evaluated with a statistical approach. Aarseth and Hovde [15] use a statistical approach on the outcome of the multiplication (ESLC). In their approach the entire outcome is judged on its variation and the predicted service life is given with boundaries. Moser [16] uses a statistical distribution on every factor. The factors all have different distributions, because not all factors act in the same way. All these separate factors, with their boundaries are multiplied and the result is a mean (ESLC) with boundaries. This last approach, in which every factor gets its own distribution, is most suitable because deviations from the normal situation can be given a place in this method. The only difficulty is defining which distribution fits best to which factor. Moser [17] used a recursive Delphi method to obtain these figures. By using experts he defined percentiles and a mean and derived the statistical distributions for the factors. By adding two new factors to the Factor Method, creating the Improved Factor Method, new distributions have to be defined and in doing this, the existing distributions of factors can be reviewed. This is part of the current PhD research of Van Nunen.

6. Conclusions

This paper presents Life Cycle Assessment for the building sector. It is clear that although LCA for buildings is possible, most LCA tools are not specifically developed for the building sector. Typical problems between LCA and the building sector are discussed in this paper. One of the problems is that the most polluting aspects (waste and energy) are not taken into account in most of the existing LCA methods. Using these methods, a LCA will show a gap of important impact assessments. Another crucial problem for using LCA in the building sector is the service life of a component. A building has a long overall service life and replacements have to take place. But the service life used in a LCA is a fixed one, although
we know the actual service life to be shorter. Without knowledge of the predicted service life it is also impossible to take sequential use into account, and as a consequence determine the exact environmental load.

In order to use LCA in the building sector it is necessary to define the service life. Only when the service life of components is estimated as close as possible, the effort to calculate the environmental load by means of a LCA has a value. To come to a method in which all the specific aspects of a situation are mentioned, the Improved Factor Method (with two new factors) can be used. To enhance the reliability of this method statistical distributions have to be added. This method calculates a better estimated service life without the need of huge data about deterioration of components.

Based on a service life that is as close as possible to the actual situation a LCA will also give results that are close to the actual situation. This is not the case in most current LCA calculations. It will be necessary to optimise the current methods in order to use LCA as a decision tool. Using the Improved Factor Method provides in this optimisation.

References

environmental assessment”, Paper CIBWORLD building congress, Toronto 2004

