Velocity and acceleration estimation for optical incremental encoders using time stamping

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jan. 2021
Velocity and acceleration estimation for optical incremental encoders using time stamping

Roel Merry*, René van de Molengraft, and Maarten Steinbuch
Eindhoven University of Technology, Department of Mechanical Engineering
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: *r.j.e.merry@tue.nl

1 Introduction

Optical incremental encoders are widely used to apply feedback control on motion systems where the position is measured at a fixed sample frequency. The accuracy is limited by the quantized measurement of the encoder. Velocity and acceleration information from incremental encoders can be obtained using only the position information [1], thus disregarding the variable rate of occurrence of the encoder events, or using model based methods such as observers [2].

This research employs the time stamping concept, in which both encoder counts and their time instants are used for the position estimation [3]. To obtain accurate velocity and acceleration estimations, the time stamping concept is extended with a skip option.

2 The skip option in time stamping

The time stamping concept stores encoder events \((t_i, x_i)\), consisting of the encoder positions \(x_i\) and the time instants \(t_i\) the transition occurs, captured at a high resolution clock. Position information is obtained using polynomial fitting through \(n\) encoder events and extrapolation to the desired time instant.

The encoder events suffer from errors due to encoder imperfections, which act as a disturbance on the position estimation. The errors are amplified in the velocity and acceleration estimations. A skip option is proposed to skip \(\sigma\) events in between two stored events. This extends the time span covered by the events in the fit without the need for more events. The skip option is shown in Fig. 1 for \(\sigma = 2\) counts.

3 Experimental results

The velocity and acceleration estimations of time stamping without skip and with \(\sigma = 3\) are shown in Fig. 2 for a sinusoidal reference signal \(r(t) = \pi/2 \sin(2\pi t)\). The estimation error of the velocity (Fig. 2(a)) with \(\sigma = 3\) is 74% more accurate than without skip, i.e. \(\sigma = 0\). For the acceleration, the estimation with \(\sigma = 3\) is 92% more accurate than with \(\sigma = 0\).

![Figure 1: Visualization of the skip option for \(\sigma=2\) counts.](image)

![Figure 2: Experimental results, quantized measurement (light grey), \(\sigma=0\) (dark grey) and \(\sigma=3\) (black).](image)

References

