Whittaker and Weyl representations for time-domain modes

Citation for published version (APA):
https://doi.org/10.1109/ICEAA.2009.5297326

DOI:
10.1109/ICEAA.2009.5297326

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Whittaker and Weyl representations for time-domain modes

B. P. de Hon

Abstract — In the spectral theory of transients one may express the temporal wavefield inside a waveguide in terms of an integral representation of modal field components. The remaining spectral integral may be evaluated asymptotically. Depending on the choice of the large parameter, the evaluation of the integrals along steepest descent paths yields Whittaker- or Weyl expansions for time-domain modes.

1 INTRODUCTION

Within the framework of the spectral theory of transients one may express the temporal wavefield inside a waveguide in terms of an integral representation over the launch-angle (or receiver angle) of local ray-field constituents, or global time-domain spectral-mode constituents. For electromagnetic problems involving short pulses and large distances the remaining spectral integral may efficiently be evaluated asymptotically [1].

Asymptotic expansions of integrals serve multiple purposes. Computation times are usually negligible, and the resulting expressions may provide a cogent description of the underlying physics. The asymptotic analysis may also unearth useful information for the development of quadrature rules with faster error decay [2]. In many cases, the original path of integration may be replaced by an integral along a steepest descent path (SDP), but often this is not the immediate objective. Knowledge about SDPs may be used to generate alternative integral representations, (not necessarily along an SDP) that are amenable to rapid evaluation [3], or it may indicate which leaky-wave modes should be taken into account in the evaluation of the radiation field for specific source and observer positions in dielectric waveguide configurations.

In the asymptotic analysis of a spectral representation of a time-domain mode (TDM), there are two natural choices for the phase, one based only on the kinematics of the problem, and another that includes the dynamics. Although quantitative information about the SDPs is not often required, qualitative information is indispensable. Below, we demonstrate that asymptotic evaluation of the integrals along the SDPs leads to an asymptotic expansion for a Whittaker-type modal field expansion (consisting of a causal and an anti-causal part [4]) in one case, and a causal Weyl-type expansion in the other. There are merits to both approaches.

2 TIME-DOMAIN PLANE-WAVE SYNTHESIS OF MODES

Let us consider a parallel-plate waveguide configuration for an isotropic line source, parallel to the y-axis. The scalar Green’s function, \( G(x, t) \), satisfies the scalar wave equation

\[
(\partial_x^2 + \partial_z^2 - c^{-2}\partial_t^2) G = -\delta(x - x')\delta(t - t'),
\]

in which \( c \) denotes the wave speed, and \( \{x', t'\} \) denote the space-time source coordinates. The \( x \)- and \( z \)-axes point in the directions transverse and longitudinal to the waveguide, respectively. The parallel plates are perfect conductors, located at \( x = 0 \) and \( x = a \), implying that \( G|_{x=0} = G|_{x=a} = 0 \). Without loss of generality, we may assume that \( x - x' > 0, z > 0, z' = 0, \) and \( t' = 0 \).

We synthesise the wavefield using a spectral representation for the analytic-signal extension, \( \hat{G}_e \), of the space-time Green’s function. Once \( \hat{G}_e \) has been determined for an isotropic line source, complex-source pulsed-beam solutions follow upon applying complexification of the source coordinates [5]. Below, we are eventually interested in field solutions due to an isotropic source with a source signature \( \partial_t^m \delta(t - iT) \) i.e., the \( m \)th derivative of the Rayleigh pulse. Here, \( T > 0 \) is a measure of the pulselength that provides a means to analyse the response to finite pulses of arbitrary width. However, we shall commence by setting \( T = 0 \). The wavefield can be constructed in several alternative ways. We focus on a representation in terms of modal (i.e., global) constituents, which is most appropriate for distances beyond the Fresnel distance \( F = a^2/cT \) of the waveguide.

We employ a transverse spectral field synthesis, in which the spectral variable is the angle of propagation \( w \) at the point of observation. The analytic-signal extension, \( \hat{G}_e \), of the space-time Green’s function may be expanded in terms of TDMs, \( \hat{G}_e^M \), with
mode index $\ell$, according to [1]

$$G = \sum_{\ell=1}^{\infty} G_{\ell}^M = \sum_{\ell=1}^{\infty} \sum_{j=1}^{4} g_{\ell,j}^M,$$  

(2)

where the TDMs have been decomposed into distinct wave species, indexed by $j \in \{1, 2, 3, 4\}$, and given by

$$g_{\ell,m,j}^M = \int_{\mathcal{W}_c} dw \frac{\left[ -i\omega(w) \right]^m}{\xi(w)} e^{-i\phi(w)},$$  

(3)

in which we have introduced a respective amplitude and phase

$$A_{\ell,j} = \frac{i\xi_c e^{-\pi i\ell_\sigma(x-c)} a}{4\pi a},$$ \hspace{1cm} (4)

$$\phi_\ell = \omega_\ell(w)[t - \zeta(w)z/c],$$ \hspace{1cm} (5)

and the four species are distinguished through

$$\sigma_j = \{-1, -1, +1, +1\}, \quad \zeta_j = \{+1, -1, -1, +1\} \quad \text{for} \quad j = 1, 2, 3, 4.$$ \hspace{1cm} (6)

In Eqs. (3)–(5), the modal frequency, and the transverse and longitudinal slownesses are given by

$$\omega_\ell = \frac{\pi \xi_c}{\xi a}, \quad \xi = \sin w, \quad \text{and} \quad \zeta = \cos w,$$ \hspace{1cm} (7)

respectively.

3 ALTERNATIVE REPRESENTATIONS FOR TIME-DOMAIN MODAL FIELDS

Due to the symmetry of the spectral mode constituents (plane-wave congruences), it suffices to consider the closed strip $\mathcal{D}_w = \{w|0 \leq \text{Re}(w) \leq \pi\}$ in the complex $w$-plane. In view of the presence of the transverse slowness $\xi = \sin w$ in the denominator of the phase $\phi_\ell$, the angles $w = 0, \pi$ are essential singularities of the integrand. The associated directions of propagation are the positive and negative $z$-directions, respectively. However, the corresponding transverse wavevectors, $k_z = \omega_\ell \xi/c = \pi \ell/a$, $\ell = 1, 2, \ldots$ are fixed, implying that the associated modal frequencies must tend to infinity.

The integral in Eq. (3) is carried out along the Weyl-type contour of integration, depicted in Figure 1. The Weyl expansion is a causal integral representation involving spectral constituents that either propagate in the forward direction, or are evanescent. We shall investigate two strategies for expanding Eq. (3) asymptotically, and shall comment on their benefits and drawbacks.

3.1 Kinematics-based asymptotic expansion

To analyse the TDM species, we investigate the following generic quantity (cf. Eq. (3))

$$\tilde{F}_{\ell,m} = \int_{\mathcal{W}_c} dw \left[ \xi(w) \right]^{-m-1} e^{-i\Omega \phi_\ell(w)},$$ \hspace{1cm} (8)

where $\phi_\ell$ and $\xi$ have respectively been defined in Eqs. (5) and (7), while $\Omega$ is a large parameter in terms of which Eq. (8) may be expanded asymptotically. In $\mathcal{D}_w$ there is a single, simple stationary point, $w = w_\ell(t)$, defined through $d_w \phi_\ell|_{w=w_\ell} = 0$. In view of Eqs. (5) and (7), we have

$$\zeta(t) = \cos w_t = \frac{z}{\xi_t},$$ \hspace{1cm} (9)

where $\zeta$ denotes the instantaneous longitudinal slowness and $\phi_\ell^{(n)} = d_w^n \phi_\ell|_{w=w_\ell}$. The respective instantaneous transverse slowness, $\xi_t$, and frequency

Figure 2: The SDP associated with Eq. (8), the Whittaker contour (dashed line) and the location of the stationary point in the complex $w$-plane for $a = 22.86$ mm, $\pi = 27$ mm, $t = 110$ ps, $T = 0$ s, $\ell = 0$ and $m = 0$. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 6, 2010 at 09:46 from IEEE Xplore. Restrictions apply.
The factor \( |\xi(w)|^{-m-1} \) may be included in the phase before the introduction of the large parameter \( \Omega \), which leads to an alternative generic modal quantity, viz.,

\[
\int_{\ell,m, \text{alt}}^\Omega = \int_{\mathcal{W}} dw \ e^{-i\Omega \psi_{\ell,m}(w)},
\]

in which

\[
\psi_{\ell,m}(w) = \phi_{\ell}(w) - i(m+1) \log(\xi).
\]

For \( \Omega = 1 \), Eqs. (8) and (15) are equivalent. The first derivative of \( \psi_{\ell,m} \) is found to be

\[
d_{w} \psi_{\ell,m} = \frac{\pi \ell}{a} \frac{z - ct \zeta}{\zeta^2} - i(m+1) \zeta.
\]

To analyse the stationary points in \( \mathcal{D}_w \), it is instructive to consider the complex \( \zeta \)-plane first. Recall that \( z > 0 \). Via \( \xi = \sin w = \sqrt{1 - \zeta^2} \) on \( \mathcal{D}_w \), the strip \( \mathcal{D}_w \) corresponds to \( \text{Re}(\xi) \geq 0 \), which is the closure of the upper Riemann sheet of the Riemann surface, associated with \( \xi = \xi(\zeta) \). The lines \( \text{Re}(w) = 0 \) and \( \text{Re}(w) = \pi \) map to the branch cut \( \zeta \leq 0 \). The condition for the stationary points in the complex \( \zeta \)-plane reads

\[
\pi \ell (z - c t \zeta) = i(m+1) a \zeta \xi.
\]

Evaluation of the square of Eq. (18) yields an equation of degree four in \( \zeta \), with four roots. Below, we examine whether those four roots satisfy Eq. (18). It is easy to show that \( d_{w} \psi_{\ell,m} \in \mathbb{R} \) for \( \text{Re}(w) = 0 \), and for \( \text{Re}(w - \pi) = 0 \). Since \( \lim_{w \to + \infty} d_{w} \psi_{\ell,m} = + (m+1) \), while \( \lim_{w \to - \infty} d_{w} \psi_{\ell,m} \to \text{sgn}(ct - z) \infty \), we infer that the number of stationary points on the imaginary \( w \)-axis must be odd. We arrive at the same conclusion for the line \( \text{Re}(w - \pi) = 0 \). From Eqs. (7) and (18) it is obvious that there are no roots on \( \{w|w \in [0, \pi]\} \). Now, suppose that there is a complex root \( w = w_t \) in \( \{w|\text{Re}(w) \in (0, \pi), \text{Im}(w) \neq 0\} \) that satisfies Eq. (18), with
and one root lies in \( \{ \zeta \} \). Then, the pair \( \{ \zeta^*, -\zeta^* \} \) would be a solution too, but one that is located on the wrong Riemann sheet, \( \text{Re}(-\zeta^*) < 0 \). So, either all four roots lie on \( \{ w | \text{Re}(w) = 0 \lor \text{Re}(w-\pi) = 0 \} \), or two of the roots lie on those lines, and one root lies in \( \{ w | 0 < w < \pi, \text{Im}(w) \neq 0 \} \).

An example of two SDPs joining \( w = 0 \) to \( w \rightarrow \pi - i\infty \), involving two stationary points is given in Figure 3. The integrals along the two SDPs, supplemented with an integral from \( \pi - i\infty \) to \( \pi/2 - i\infty \) that vanishes, are equivalent to the causal Weyl-type expansion. In Figure 4 we have depicted the situation for a finite pulse width \( T = 80\, \text{ps} \), and have also included the SDP associated with the asymptotic expansion of Eq. (8).

4 DISCUSSION AND CONCLUSIONS

The integral representations for a TDM, involving integration along the SDPs associated with Eqs. (8) and (15) are Whittaker- and Weyl-type representations. The former consists of causal and anti-causal parts, while the latter is causal. However, the causal part of a Whittaker representation may be isolated by starting to record the field at a time \( t_1 \) after the source has effectively ceased to act. For short-pulse fields at considerable longitudinal distances from the source, the condition on \( t_1 \) may be relaxed further. Alternatively, the Whittaker expansion may be supplemented with an integral along an SAP to restore causality.

In the asymptotic evaluation of Eq. (8), the choice of the phase is based on kinematics only, and allows for a physical interpretation as a field constituent generated by moving launch point [1]. Further, all higher-order modes share the same stationary point and SDP, which may both be evaluated in closed form. The significance of this is that the resulting modal series for the total time-domain field is amenable to a highly efficient rational approximation [1]. Although the accuracy of retaining only the leading term in the asymptotic expansion of Eq. (8) is not the same as that in retaining only the leading terms in the asymptotic expansion of Eq. (15), in both cases the error may be estimated.

In the asymptotic evaluation of Eq. (15), the dynamics of the problem is included in the choice of the phase. The stationary points are the roots of a polynomial of degree four, which may still be determined analytically. However, the lucidity of the underlying physics is less transparent.

One may argue that for more interesting configurations, such as the slab waveguide, closed-form expressions are not available, so one would have to resort to numerical evaluation of the corresponding quantities anyway. However, even if one prefers to evaluate the spectral integrals numerically, the asymptotic analysis may prove essential in the development of efficient quadrature rules [2].

Acknowledgements

The work was partly carried out during a sabbatical leave at the University of Tel Aviv.

References