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Design and correctness proof of an emulation of the
floating–point operations of the Electrologica X8.

A case study

F.E.J. Kruseman Aretz

March 30, 2010

1 Introduction

Some time ago I decided to write an emulator for a Dutch computer from the sixties
of the previous century, the Electrologica X8, in order to be able to run its ALGOL 60
implementation and to do some measurements with it. That emulator was written in
(standard ISO) Pascal.

Part of it was the emulation of its floating–point operations. I started by designing them
directly in Pascal, but then immediately encountered a number of complications.

First of all the fact that, using integer arithmetic of restricted capacity, the mantissa of
40 bits had to be divided over two 32–bit integer variables. But also the limitations on
the value of the (binary) exponent and, more generally, the treatment of all exceptional
cases caused much troubles.

Moreover, I wished to emulate not only the operations themselves, but also their timing,
in order to be able to compare X8 program execution speed with that of other computers.
However, I did not have any documentation of the hardware implementation. I remem-
bered only some details, especially some of the tricks to improve the efficiency. I tried
to reflect in my code a possible structure of the hardware, incorporating those details.
Altogether a complicated affair.

Therefore, I decided to express the logic of the emulation in terms of guarded command
language[1, 2] first, without any capacity restrictions for the exponent. The routines for
addition, multiplication, and division were designed using operational arguments. I felt,
then, a need to prove them correct. And not without results: a correction of a constant in
the routine for addition (from 81 to 80) showed necessary to complete its proof! Having
the logic of the routines available it was not too difficult to design the Pascal version with
all its nasty details.

For the correctness proofs I used weakest–precondition logic[4].

These proofs were more complex and and more lengthy than I expected. After completion
I asked the Eindhoven Tuesday Afternoon Club for help, in the hope that a simplification
would be possible. They looked, in my presence, into it one afternoon, but didn’t get any

1



further than a few lines of the first proof and their remarks were not very helpful. They
returned never to the subject after that session.

The structure of this report is as follows.

In Section 2, I give the necessary information about the Electrologica X8 and its floating–
point representation. Moreover the rounding of a real number to a floating–point number
is defined and some useful properties thereof are mentioned.

Sections 3, 4, and 5 present the guarded–command versions of multiplication, division,
and addition, respectively. Each of them has four subsections. First, the operational de-
sign considerations are presented. Second, the resulting procedure is given; it follows the
design considerations faithfully and is, hopefully, comprehensible without further com-
ments or assertions. Third, this procedure is given again, part by part, now augmented
with the assertions and invariants necessary for a formal correctness proof. I also give
here comments on their choice, some of the resulting proof obligations, and some critical
ingredients of the proofs. The proof obligations and, where necessary, hints for the proofs
are given in Appendix A. A fourth subsection presents some final remarks.

In Section 6 I try to sum up some of my experiences.

2 The Electrologica X8

Electrologica was a Dutch computer factory, founded in 1956. It produced the Electro-
logica X1 (from 1958) and its successor, the Electrologica X8 (from 1965). The latter
was more or less upwards compatible with the former, about a factor of 12 faster, and
in addition it had floating–point hardware: an additional register F and instructions for
floating–point addition, subtraction, multiplication, and division.

Floating–point numbers in F were represented by the Grau–representation [3]. In that
representation integral values are a natural subset of the floating–point numbers. Hence
register F could be used for both integer and real–number arithmetic, useful for the
implementation of the mixed–mode arithmetic expression of ALGOL 60.

2.1 Floating–point numbers

In the Grau representation a number is characterized by an integral mantissa and an
integral exponent. The X8 used 40 bits to represent the absolute value of the mantissa
and a separate bit for the number sign. The binary exponent was encoded in 12 bits
(including its sign), but in this report we will not limit its value.

So let us introduce the set of floating–point numbers F as

F = {(s,m, e) | s ∈ {+1,−1} ∧m ∈ N ∧ 0 ≤ m < 240 ∧ e ∈ Z}

For f ∈ F we denote its components by f.s, f.m, and f.e, so f = (f.s, f.m, f.e).

Let f = (s,m, e) with f ∈ F . It represents a real number

val .f = s×m× 2e
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In general, these representations are not unique. If m < 239, we can double m, at the
same time decreasing e by 1. If m is even, we can half m, at the same time increasing
e by 1. Two floating–point numbers f1 and f2 are called equivalent, denoted f1

∼= f2, if
they represent the same real number:

(f1
∼= f2) = (val .f1 = val .f2)

Hence

(s1,m1, e1) ∼= (s2,m2, e2) = (s1×m1× 2e1 = s2×m2× 2e2)

The standard representation in the X8 is the one for which |e| is minimal (closest to
zero). Consequently, all integral values n with |n| < 240 will be represented preferably by
a floating–point number (sign.n, |n|, 0).

All floating–point operations of the X8 accepted operands that were not in standard form
and delivered the result in register F in standard form.

The following algorithm brings a floating–point number (s,m, e) into standard form:

procedure standardize((s,m,e): f number);
{brings (s,m, e) into standard form}
begin {(s,m, e) = (ss,mm, ee)}

if m = 0 → s, e := +1, 0
[] m > 0 → do {invariant (s,m, e) ∈ F ∧ (s,m, e) ∼= (ss,mm, ee)}

even.m ∧ e < 0 → m, e := m div 2, e + 1
[] m < 239∧ e > 0 → m, e := m ∗ 2, e − 1
od

fi {(s,m, e) ∈ F ∧ (s,m, e) ∼= (ss,mm, ee) ∧ (s,m, e) in standard form}
end;

We are now in the position to formulate the quality requirement that was fulfilled by the
X8 hardware: the floating–point operations ‘+’, ‘−’, ‘∗’, and ‘/’ all delivered the best
possible result, i.e. that floating–point number in standard form whose value is closest to
the exact result. In case that the exact result of the operation was precisely midway two
consecutive floating–point numbers, the result was rounded upwards for positive results
and downwards for negative results. This uniquely specifies the functionality of these
operations.

In our emulations of these operations we will stick to this quality requirement.

The X8 floating–point numbers can be partitioned into intervals. In each interval the
numbers are equidistant and their values run from 239 × 2e, (239 + 1) × 2e, · · · , 240 × 2e

with an inter-spacing of 2e (for fixed value of e). At the border of consecutive intervals
that inter-spacing changes by a factor of 2.

This has consequences for the formal expression of our quality requirement if the exact
result of an operation is near the boundary between two successive intervals:

239 + 0.4 rounds to 239, i.e., floating–point number (+1, 239, 0),
239 − 0.4 rounds to 239 − 0.5, i.e., floating–point number (+1, 240 − 1,−1),

the first value lying in an interval with inter-spacing 1, the second in an interval with
inter-spacing 0.5.

3



2.2 Rounding

We define a function rnd from < to F in the following way.

for x > 0: rnd .x = (+1,m, e) where 239 ≤ m < 240

and if m > 239 then (m− 1/2)× 2e ≤ x < (m+ 1/2)× 2e

and if m = 239 then (m− 1/4)× 2e ≤ x < (m+ 1/2)× 2e

for x = 0: rnd .0 = (+1, 0, 0)

for x < 0: rnd .x = (−1,m, e) where (+1,m, e) = rnd .(−x)

Note that rnd .x is, in general, not in standard form.

The quality requirement for the floating–point operations that was formulated in the
previous subsection can be formally expressed in terms of rounding. For multiplication it
reads:

f1 ∗ f2
∼= rnd .(val .f1 × val .f2)

with f1 ∗ f2 in standard form1.

We mention, without proof, the following properties of rnd:

1. rnd .x ∈ F for all x ∈ <.

2. in rnd .x = (s,m, e) all of s, m, and e are uniquely determined.

3. rnd is monotonically non–decreasing, i.e.
(∀x, x′ : x, x′ ∈ < : (x < x′)⇒ (val .rnd .x ≤ val .rnd .x′))

4. rnd .val .f ∼= f for f ∈ F . Hence:

5. rnd is idempotent, i.e. rnd .val .rnd .x = rnd .x for x ∈ <.

6. if rnd .x = (s,m, e) then rnd .(x× 2ee) = (s,m, e+ ee), for all x ∈ < with x 6= 0.

7. only 0 maps to (+1, 0, 0), i.e. if rnd .x = (+1, 0, 0) then x = 0.

8. (∀x, z : (x ∈ <) ∧ (z ∈ F) :
(|val .z − x| ≥ |val .rnd .x− x|) ∧
((|val .z − x| = |val .rnd .x− x|)⇒ (|val .rnd .x| ≥ |val .z|)).

The last property above expresses that for x ∈ <, rnd .x is indeed a best approximation
of x in F and that, in case x lies midway two consecutive F–members, the one greatest
in absolute value is taken for rnd .x.

We prove the following two properties:

1In the sequel we will abbreviate val .f1×val .f2 to f1×f2. The same holds for the operators / and +.
In that notation the quality requirement given above reads:

f1 ∗ f2
∼= rnd .(f1 × f2) ∧ f1 ∗ f2 in standard form.
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1. Let x > 0 and y = val .rnd .x.
Then

∣∣∣y−x
y

∣∣∣ ≤ 2−40.

Proof:
Let rnd .x = (+1,m, e). Then y = m× 2e with 239 ≤ m < 240.
From the definition of rnd we have |y − x| ≤ 1/2× 2e.
We derive∣∣∣y−x

y

∣∣∣
≤ (1/2× 2e)/(m× 2e)
= 1/(2×m)
≤ 1/(2× 239)
= 2−40

2. Let y = (+1,m, e) be ∈ F with val .y > 0 and x be ∈ < such that |x| < val .y×2−41.
Then rnd .(val .y + x) ∼= y.

Proof:
For x = 0 the proof is trivial: rnd .val .y ∼= y, for all y ∈ F .
So let x 6= 0. Without loose of generality we may assume 239 ≤ m < 240.
If x > 0 then

(m− 1/2)× 2e

< (m− 1/40)× 2e

< val .y
< val .y + x
< (m+m× 2−41)× 2e

< (m+ 240 × 2−41)× 2e

= (m+ 1/2)× 2e,
hence rnd .(val .y + x) = (+1,m, e).
If x < 0 then

(m− 1/2)× 2e

= (m− 240 × 2−41)× 2e

< (m−m× 2−41)× 2e

< val .y + x
< val .y
< (m+ 1/2) ∗ 2e,

whereas for m = 239 even (m− 1/4)× 2e < val .y + x.
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3 Multiplication

As mentioned in the introduction this section consists of four subsections:

1. operational design considerations,
2. the resulting algorithm,
3. the correctness proof of the algorithm, and
4. some final remarks.

The algorithm follows the design considerations faithfully and should be comprehensible
without further comments or assertions. It is, therefore, presented without intermediate
assertions. These are given, in full detail, in the correctness proof of the algorithm.

3.1 Operational design considerations

We start the description of the emulation of the floating–point operations of the X8 with
that of multiplication. The task is simple, at least in principle: multiply the two mantissas,
add the two binary exponents, and determine the sign according to the standard rule.
Complications arise only if the product of the two mantissas exceeds the maximum value
of 240 − 1: then it has to be brought back within the capacity by (successive) halving
the mantissa and incrementing the exponent. Moreover we have to carry out a proper
round–off.

There are, however, some good reasons to do it differently. In the first place we expressed
already our desire to make an emulation that reflects more or less what we know about
the original hardware. In the sixties of the previous century, registers and accumulator
logic were rather expensive, with a price proportional to their bit length. It was, therefore,
prohibitive to accommodate an 80 bit product, of which at most 41 bits were of interest:
40 bits for the representation of the mantissa of the result and 1 bit for the rounding
information. Secondly, also in our emulation it is not attractive to manipulate integer
values of 80 bits (which, with an integer capacity of 31 bits, must be represented by at
least three integer variables). In the third place we remember that in the X8 hardware
small integer factors were dealt with rather efficiently: the execution time of multiplication
depended on the number of relevant bits of the operands.

Therefore, we took the following approach:
We build the mantissa as a 42–bit2 integer m, starting by 0. We scan iteratively the
bits of the multiplier, from right to left. For each non–zero bit of the multiplier, we add
the multiplicand to m. In principle, we multiply the multiplicand by 2 for each (zero
or non–zero) bit of the multiplier. If thereby, however, the multiplicand would exceed a
length of 42 bits, we half m instead, incrementing the binary exponent of the product by
1 at the same time.

We can express this approach by the piece of (pseudo) code given in the next subsection.

2In Section 3.3 we show that a 41–bit integer would not suffice.
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3.2 The resulting procedure

procedure f multiply(f2: f number);
{computes, for global f1, f1 := f1 ∗ f2}
var m, e, guard: integer; s: sign;
begin {f1 = g1 ∧ f2 = g2}

let f1, f2 = (s1,m1,e1), (s2,m2,e2);
m, e := 0, 0;

{multiply mantissa’s:}
do m2 > 0→

if odd.m2 → m, m2 := m + m1, m2 − 1
[] even.m2 → skip
fi;
if m1 < 241 → m1 := 2 ∗ m1
[] m1 ≥ 241 → m, e := m div 2, e + 1
fi;
m2 := m2 div 2

od;
{prepare resulting mantissa for proper round–off:}

guard := 0;
do m ≥ 240 → guard, m, e := m mod 2, m div 2, e + 1
od;

{round:}
if guard = 1 and m = 240 − 1→ m, e := 239, e + 1
[] guard = 1 and m < 240 − 1→ m := m + 1
[] guard = 0 → skip
fi;

{form result:}
if s1 = s2 → s := +1
[] s1 6= s2 → s := −1
fi;
f1 := (s,m,e + e1 + e2);
standardize(f1)

{f1 ∼= rnd .(g1× g2) ∧ f1 in standard form}
end {f multiply};
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3.3 Correctness proof of f multiply

The following assertion holds, and is used, throughout the proof; all assertions should be
augmented by it:

P = 0 ≤ g1.m < 240 ∧ 0 ≤ g2.m < 240 ∧ 0 ≤ m1 < 242 ∧ 0 ≤ m2

We start by proving the correctness of the code for multiplying the two mantissa’s. We do
so only for the case that g2.m > 0: invariant P2 holds trivially if g2.m = 0. The detailed
proof obligations are worked out in Appendix 1.

{f1 = g1 ∧ f2 = g2 ∧ g2.m > 0}
m, e := 0, 0;
{I0}
do m2 > 0→
{m2 > 0 ∧ I0}
if odd.m2 → m, m2 := m + m1, m2 − 1
[] even.m2 → skip
fi;
{P0}
if m1 < 241 → m1 := 2 ∗ m1
[] m1 ≥ 241 → m, e := m div 2, e + 1
fi;
{P1}
m2 := m2 div 2
{I0}

od;
{P2}

where

P2 = 0 ≤ m < 242 ∧
0 ≤ e ∧
(m < 240 → e = 0) ∧
m× 2e ≤ g1.m× g2.m < (m+ 1)× 2e

In P2 the clause ‘m < 240 → e = 0’ might seem superfluous for the correctness proof of
the multiplication. Note, however, that P2 ∧ e = 0 implies m = g1.m× g2.m, since both
m and g1.m×g2.m are integral. This fact is used in the last step of the correctness proof.
The clause ‘0 ≤ e’ is required in a later stage of the proof to show that incrementation of
e by 1 will lead to a non–zero value of e.

The invariant for the iteration, I0, reads:

I0 = 0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m+m1×m2)× 2e ≤ g1.m× g2.m < (m+ 1 +m1×m2)× 2e

The first assertion of I0 is used to prove the first assertion of P0, the third and fourth
assertions of I0 are necessary to prove the third assertion of P0.

Proof obligations here are the validity of I0 at the start of the iteration, the invariance of
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I0 in the iteration, and the fact that I0 ∧m2 = 0 implies P2.

At the start we have3:

(P ∧ f1 = g1 ∧ f2 = g2 ∧ g2.m > 0)
⇒
(P ∧ I0) [m/0, e/0]

which holds since f1 = g1 ∧ f2 = g2 implies m1 = g1.m ∧ m2 = g2.m. Consequently
g2.m > 0 implies m2 > 0, hence m2 > 0 ∨m1÷ 2 ≤ m.

At the end of the iteration we have I0 ∧m2 = 0. Hence P2, since for g2.m > 0 we derive:
m2 = 0 ∧m < 240

⇒ m1÷ 2 ≤ m ∧m < 240

⇒ m1÷ 2 < 240

⇒ m1÷ 2 ≤ 240 − 1
⇒ m1 ≤ 2× (240 − 1) + 1
⇒ m1 ≤ 241 − 1
⇒ m1 < 241

⇒ e = 0

Of course we have to prove that {I0∧m2 > 0}S{I0}, where S is the controlled statement,
showing that I0 is an invariant indeed. There are three steps:

1. {I0 ∧m2 > 0}
if odd.m2 → m, m2 := m + m1, m2 − 1
[] even.m2 → skip
fi;
{P0}

where P0 reads:
P0 = 0 ≤ m ≤ 2×m1 ∧

0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1 ≤ m) ∧
(m+m1×m2)× 2e ≤ g1.m× g2.m < (m+ 1 +m1×m2)× 2e ∧
even.m2

The proof obligations read:
(I0 ∧m2 > 0 ∧ odd .m2)⇒ P0 [m/m+m1,m2/m2− 1] and
(I0 ∧m2 > 0 ∧ even.m2)⇒ P0.

The proofs are elementary, since assignment ‘m, m2 := m + m1, m2 − 1’ leaves
term m+m1×m2 invariant.

2. {P0}
if m1 < 241 → m1 := 2 ∗ m1
[] m1 ≥ 241 → m, e := m div 2, e + 1
fi;
{P1}

where P1 reads:

3notation Q [x/y] is used for assertion Q with expression y substituted for identifier x.
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P1 = 0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m+m1× (m2÷ 2))× 2e ≤ g1.m× g2.m <

(m+ 1 +m1× (m2÷ 2))× 2e ∧
even.m2

The proof obligations read:
(P0 ∧m1 < 241)⇒ P1 [m1/2×m1] and
(P0 ∧m1 ≥ 241 ⇒ P1 [m/m÷ 2, e/e+ 1].

For the proof we use that m − 1 ≤ 2 × (m ÷ 2) ≤ m and that even.m2 implies
2× (m2÷ 2) = m2, from which it follows that

(m÷ 2 +m1× (m2÷ 2))× 2e+1

≤ (m+m1×m2)× 2e

≤ g1.m× g2.m
< (m+ 1 +m1×m2)× 2e

≤ (m÷ 2 + 1 +m1× (m2÷ 2))× 2e+1 }
3. {P1}

m2 := m2 div 2
{I0}

The proof obligation reads:
P1 ⇒ I0 [m2/m2÷ 2].

Since even.m2∧m2÷2 = 0 implies m2 = 0, the third statement of the first iteration
indeed restores invariant I0.

We proceed by proving the next step of f multiply:

{P2}
guard := 0;
{I1}
do m ≥ 240 → guard, m, e := m mod 2, m div 2, e + 1
od;
{P3}

where

P3 = 0 ≤ m < 240 ∧
0 ≤ e ∧
guard ∈ [0, 1]) ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m+ guard/2)× 2e ≤ g1.m× g2.m < (m+ guard/2 + 1/2)× 2e

Iteration invariant I1 reads:
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I1 = 0 ≤ m < 242 ∧
0 ≤ e ∧
guard ∈ [0, 1]) ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m+ guard/2)× 2e ≤ g1.m× g2.m < (m+ 1)× 2e ∧
(m < 240 → g1.m× g2.m < (m+ guard/2 + 1/2)× 2e)

The proof obligations read:

P2 ⇒ I1 [guard/0],
(I1 ∧m ≥ 240)⇒ I1 [guard/m mod 2,m/m÷ 2, e/e+ 1], and
(I1 ∧m < 240)⇒ P3.

Here it is that we use our knowledge that 0 ≤ e and therefore ¬ (e+ 1 = 0).

The last step in our proof is the demonstration of:

{P3}
if guard = 1 and m = 240 − 1→ m, e := 239, e + 1
[] guard = 1 and m < 240 − 1→ m := m + 1
[] guard = 0 → skip
fi;
{R}

where assertion R is given by:

R = 0 ≤ m < 240 ∧
0 ≤ e ∧
(m < 239 → e = 0) ∧
(e > 0 ∨m = g1.m× g2.m) ∧
(m− 1/2)× 2e ≤ g1.m× g2.m < (m+ 1/2)× 2e ∧
(m = 239 → (m− 1/4)× 2e ≤ g1.m× g2.m)

This amounts to proving:

(P3 ∧ guard = 1 ∧m = 240 − 1)⇒ R [m/239, e/e+ 1],
(P3 ∧ guard = 1 ∧m < 240 − 1)⇒ R [m/m+ 1], and
(P3 ∧ guard = 0)⇒ R.

which is straightforward.

It follows from R straightforward that (+1,m, e) ∼= rnd.(g1.m× g2.m), since for m ≥ 239

even the stronger (+1,m, e) = rnd .(g1.m × g2.m) holds, whereas for m < 239 we have
(+1, g1.m× g2.m, 0) ∈ F , hence (+1, g1.m× g2.m, 0) ∼= rnd .(g1.m× g2.m). This implies
immediately our quality requirement for multiplication, reading

f1 ∼= rnd .(g1× g2).

3.4 Final remarks

Apart from proving our quality requirement for multiplication, we also proved that when-
ever m has less then 40 bits, m = g1.m × g2.m due to the fact that, according to R,
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m < 239 implies e = 0, which in turn implies m = g1.m × g2.m. Hence in that case the
product is exact: val .f1 = g1× g2.

This is an important aspect: it means that the floating–point multiplication can be used
for integer arithmetic. If both operands are integers (i.e., g1.e = g2.e = 0) their product
is integral and exact, provided that g1.m× g2.m < 239.

For proving this, we had to incorporate in most assertions some additional clauses, which
were not necessary for the proof of the quality requirement itself. It took some effort to
find the clause
g2.m > 0→ (m2 > 0 ∨m1÷ 2 ≤ m)

in I0, by which the clause
m < 240 → e = 0

in P2 could be proved.

We also observe that if val .g1 = 0 or/and val .g2 = 0 then the result of their floating–point
multiplication has zero value too. This follows from P2:

(P2 ∧ g1.m× g2.m = 0)→ m× 2e ≤ 0,
hence m = 0, which is retained in the remainder of the code..

An example in which in the rounding phase the first alternative is chosen is given by
the multiplication of 221 − 1 by 221 + 1. The first phase of the multiplication leads to
m = 241− 1 and e = 1 (showing that in P2 a bound g1.m× g2.m < (m+ 1/2)× 2e would
have been too sharp), the second phase leads to m = 240 − 1, e = 2, and guard = 1, and
the rounding phase to m = 239 and e = 3. The best answer indeed, where 242 − 1 (the
exact product) lies between (240 − 1) × 22 and 239 × 23, but closer to the latter than to
the former value.

The same example shows the need for 42 bits rather than 41 bit results in the multipli-
cation phase (by allowing m to grow larger than 241 − 1 rather than restricting its value
to at most 241 − 1). Otherwise the multiplication phase would lead to m = 240 − 1 and
e = 2, being at the same time the (erroneous) final result.

That in the multiplication phase m can grow beyond 241 is shown by multiplying 239 − 1
by 5, resulting in m = 241 + 239 − 5, e = 0, m1 = 242 − 1, and m2 = 0 (indeed both m
and m1 below 242, as asserted in P2 and P , respectively).

We see that for a small mantissa of multiplier f2 the number of additions and shifts is
minimal: the multiplication of the mantissa’s ends when the multiplier bits are exhausted.
In the hardware, and also in the Pascal version of the emulation, multiplier and multipli-
cand were interchanged if the number of significant bits of the multiplier exceeded that
of the multiplicand.

In the code for multiplying the two mantissas assignment ‘m2 := m2 − 1’ in

if odd.m2 → m, m2 := m + m1, m2 − 1
[] even.m2 → skip
fi

is superfluous: for odd values of m2 the value of m2÷ 2 is equal to that of (m2− 1)÷ 2.
Omitting that assignment complicates, however, the assertions in the correctness proof
tremendously.

In the code for multiplying the two mantissas the part:
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{P0}
if m1 < 241 → m1 := m1 ∗ 2
[] m1 ≥ 241 → m, e := m div 2, e + 1
fi;
{P1}
m2 := m2 div 2
{I0}

can be rewritten as:

{P0}
if m1 < 241 → m1, m2 := m1 ∗ 2, m2 div 2
[] m1 ≥ 241 → m, e, m2 := m div 2, e + 1, m2 div 2
fi
{I0}

complicating the code but simplifying the correctness proof. From an operational point of
view the transformation from the latter to the former code is trivially correct, whereas the
correctness proof by means of weakest preconditions requires the construction of assertion
P1. We will see more examples of this phenomenon.

13



4 Division

4.1 Operational design considerations

In the computation of f1/f2, we want, by shifting the mantissa’s, reach the situation that
1 ≤ f1.m/f2.m < 2, by either doubling f2.m until 2 × f2.m exceeds f1.m or doubling
f1.m as long as it is smaller than f2.m. In this way we prepare, in a minimal number of
shift steps, the two operands for the division stage.

In this division stage, we build a quotient mantissa m of 40 bits in 40 iterations steps,
starting with m = 0.

In each step we inspect whether we can subtract f2.m from f1.m without f1.m becoming
negative. If we can, we do so and add 1 to the quotient mantissa m. Moreover we double m
before the inspection, and we double f1.m after the operation. Thanks to the preparation
prior to this iteration, in the first iteration step indeed f1.m exceeds f2.m. Therefore we
end, after 40 iteration steps, with a value of m fulfilling 239 ≤ m < 240 and a division
remainder in f1.m between 0 and 2× f2.m, which is then used for properly rounding m.

We do not consider the exception g2.m = 0, i.e. division by zero.
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4.2 The resulting procedure

procedure f divide(f2: f number);
{computes, for global f1, f1 := f1/f2}
var m, e, i, guard: integer; s: sign;
begin {f1 = g1 ∧ f2 = g2 ∧ g2.m > 0}

let f1, f2 = (s1,m1,e1), (s2,m2,e2);
if m1 = 0 → m, e := 0, 0
[] m1 > 0 ∧ m2 > 0 →

e := 0;
{shift mantissa’s:}

do m1 ≥ 2 ∗ m2 → m2, e := 2 ∗ m2, e + 1
[] m1 < m2 → m1, e := 2 ∗ m1, e − 1
od;
{divide:}

m, i := 0, 0;
do i < 40 →

if m1 ≥ m2 → m, m1, i := 2 ∗ m + 1, 2 ∗ (m1 − m2), i + 1
[] m1 < m2 → m, m1, i := 2 ∗ m, 2 ∗ m1, i + 1
fi

od;
{round:}

if m1 ≥ m2 → m := m + 1
[] m1 < m2 → skip
fi;
e := e − 39 + e1 − e2

fi;
{form result:}

if s1 = s2 → s := +1
[] s1 6= s2 → s := −1
fi;
f1 := (s,m,e);

{f1 = rnd .(g1/g2)}
standardize(f1)

{f1 ∼= rnd .(g1/g2) ∧ f1 in standard form}
end {f divide};

4.3 Correctness proof of f divide

In our proof we consider only the case that g1.m > 0. Again all proof obligations are
worked out in Appendix A.

As was the case with multiplication, we have a general assertion by which all assertions
in the proof should be augmented:

P = 1 ≤ g1.m < 240 ∧ 1 ≤ g2.m < 240 ∧ 0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240
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We start by proving:

{f1 = g1 ∧ f2 = g2}
e := 0;
{I0}
do m1 ≥ 2 ∗ m2 → m2, e := 2 ∗ m2, e + 1
[] m1 < m2 → m1, e := 2 ∗ m1, e − 1
od;
{P0}

Note that the iteration ends since both m1 > 0 and m2 > 0.

An easy and reasonable choice for P0 would be:

P0 = 1 ≤ m1/m2 < 2 ∧
(m1/m2)× 2e = g1.m/g2.m

with invariant I0 reading:

I0 = (m1 < 2×m2 ∨m1 < 240) ∧
(m1/m2)× 2e = g1.m/g2.m

(the first clause of I0 being necessary for proving that assignment ‘m2 := 2 ∗ m2’ does
not invalidate m2 < 240), but by this choice of P0 we cannot infer that in the rounding
phase of the algorithm the statement ‘m := m + 1’ thus not lead to overflow (i.e., to a
value of m exceeding 240−1). For that purpose we need a stronger version of P0, reading:

P0 = 1 ≤ m1/m2 ≤ 2− 2−39 ∧
(m1/m2)× 2e = g1.m/g2.m

For proving P0 we need also a stronger version of invariant I0:

I0 = (m1 < 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m

This leads to post condition I0 ∧m1 < 2×m2 ∧m1 ≥ m2, implying:

P0
′ = 1 ≤ m1/m2 < 2 ∧

(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m

from which we can infer m1/m2 ≤ 2− 2−39 and hence P0 by the following argument.

We have to find the maximum value of m1/m2 under the condition:
m1/m2 < 2 ∧m2 < 240 ∧ (m1 < 240 ∨ even.m1).

Condition m1/m2 < 2 implies m1 ≤ 2×m2− 1. By this restriction m1/m2 assumes, for
fixed value of m2, its maximal value for m1 = 2×m2− 1. Then m1/m2 = 2− 1/m2.
For m2 ≤ 239 the maximal value of 2− 1/m2 is 2− 2−39.
For m2 > 239, however, 2 − 1/m2 > 2 − 2−39. Here we need the additional condition
m1 < 240 ∨ even.m1: m2 > 239 implies 2×m2− 1 > 240 and then m1/m2 is maximal for
an even value of m1 ≤ 2 ×m2 − 1: m1 = 2 ×m2 − 2. With this choice of m1 we have
m1/m2 = 2− 2/m2 and for all values of m2 ≤ 240 again m1/m2 ≤ 2− 2−39.

We continue the proof by demonstrating:
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{P0}
m, i := 0, 0;
{I1}
do i < 40 →

if m1 ≥ m2 → m, m1, i := 2 ∗ m + 1, 2 ∗ (m1 − m2), i + 1
[] m1 < m2 → m, m1, i := 2 ∗ m, 2 ∗ m1, i + 1
fi
{I1}

od;
{P1}

where

P1 = 239 ≤ m < 240 ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m+m1/(2×m2))× 2e−39 = g1.m/g2.m

Use for the iteration the following invariant:

I1 = 0 ≤ i ≤ 40 ∧
0 ≤ m < 2i ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m+m1/(2×m2))× 2e−i+1 = g1.m/g2.m

Indeed we have {P0} m, i := 0, 0 {I1}, I1 invariant, and (I1 ∧ (i ≥ 40)) ⇒ P1. The fact
that in the latter 239 ≤ m is derived in the following way:

239

≤ (g1.m/g2.m)× 239−e

= m+m1/(2×m2)
< m+ 1,

therefore 239 ≤ m.

The last step reads:

{P1}
if m1 ≥ m2 → m := m + 1
[] m1 < m2 → skip
fi;
{P2}

where

P2 = 239 ≤ m < 240 ∧
(m− 1/2)× 2e−39 ≤ g1.m/g2.m < (m+ 1/2)× 2e−39 ∧
(m = 239 → m× 2e−39 ≤ g1.m/g2.m)

The case m1 < m2 is simple: P1 ∧ (m1 < m2)→ P2.

The fact that by rounding no overflow can occur, i. e., that the assignment ‘m := m + 1’
under the condition m1 ≥ m2 will not lead to m = 240 needs some explanation.

From P1 ∧m1 ≥ m2 we infer:
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m+ 1
< m+m1/(2×m2) + 1
= g1.m/g2.m× 239−e + 1
≤ (2− 2−39)× 2e × 239−e + 1
= 240.

Assertion P2 implies immediately that (+1,m, e − 39) = rnd .(g1.m/g2.m). With s the
correct sign of g1/g2 it follows that (s,m, e− 39 + e1− e2) = rnd .(g1/g2).

4.4 Final remarks

If we compare the correctness proof of the division procedure with that of the multiplica-
tion procedure, the former seems much simpler than the latter. Nevertheless it was not
simple to construct the assertions needed.

First, assertion m1 < 2 × m2 ∨ m1 < 240 in invariant I0 had to be invented. From
an operational point of view it is immediately evident that in the first do–loop of the
algorithm either m1 or m2 is scaled up, but never both, in order to arrive at the situation
that 1 ≤ m1/m2 < 2. If it is m2 that is to be scaled up, i.e. if m1/m2 ≥ 2, m1 remains
unaltered and hence m1 < 240. If is m1 the one to be scaled up, on the other hand, i.e.
if m1/m2 < 1, doubling m1 will not invalidate m1/m2 < 2. It is, however, not clear to
me how to find the given assertion by ‘letting the formulae doing the work’, without any
interpretation.

Secondly, assertion m1/m2 ≤ 2−2−39 in P0, needed to show that rounding of m does not
overflow, took me much time to find. Then, for proving that relation in P0, I had again
to add an assertion to I0. Again that assertion is clear from an operational point of view:
initially m1 < 240 and only by doubling it will exceed 240 − 1, becoming even thereby.
But again I do not see how to arrive at that assertion for I0 without that operational
interpretation.

Originally I discovered the fact that no overflow can occur when rounding m by the
following simple argument.

Let a and b be two natural numbers, 0 ≤ a and 0 < b < 240, such that a/b < 1. Then
a < b, hence a ≤ b− 1 and therefore a/b ≤ 1− 1/b < 1− 2−40. Rounding a/b to 40 bits
precision leads to overflow (i.e., to a result 1) if and only if a/b+ 0.5× 2−40 ≥ 1, which is
not the case.

Now I wonder why I had so much troubles to prove the absence of overflow danger by the
technique of weakest preconditions. Did I not use an adequate set of assertions or is that
technique not well suited for showing all properties of this algorithm correct?
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5 Addition

5.1 Operational design considerations

In general the two numbers f1 and f2 to be added will have different scales, i.e., their
binary exponents f1.e and f2.e will be unequal. Before we can add or subtract (depending
on whether the two numbers have equal signs or not) the two mantissa’s f1.m and f2.m
we have to equalize scales. This can be done by decreasing the greatest binary exponent,
or by increasing the smallest one, or by doing both.

If we decrease the greatest exponent by one, we have to multiply the corresponding
mantissa by two (i.e., shifting it one place to the left). We can do so without capacity
problems as long as the latter is less than 239.

Increasing the smallest exponent by one must be compensated by halving the correspond-
ing mantissa (shifting it one place to the right). Mantissa’s being integral, one bit of
information is lost.

In order to restrict information loss as much as possible, we have to decrease the greatest
exponent as much as possible and only when necessary continue by incrementing the
smallest one.

Bits that are lost by shifting the mantissa corresponding to the smallest exponent to the
right may play a role in the correct rounding off. We first deal with addition proper, i.e.
the case that the two numbers have equal signs.

When adding f2.m to f1.m, both mantissa’s being at most 240 − 1, the sum can exceed
the capacity. By halving the sum (and incrementing the exponent) we can bring the sum
within capacity again, but doing so we loose a bit of information at the same time. In
the rounding procedure we need to know whether the fractional part that was shifted out
is at least 0.5. It follows that in the case of addition proper we can do with one guarding
bit, in which we save the value of the bit that was most recently shifted out (if any at all;
otherwise the fractional part is just 0).

Matters are much more complicated in the case of proper subtraction i.e. the case that
the two numbers have different signs.

Suppose that f1.m > f2.m. We compute f1.m − f2.m. Its value is well within the
capacity, but, if it is smaller than 239, we make no good use of the capacity! In that case
we should shift it one place to the left again (and, of course, adapt the exponent). Doing
so we can reinstall one bit that got lost when equalizing exponents, and we need another
bit for the rounding. So we need to keep at least two guarding bits. Do we need more
bits?

The answer is both negative and affirmative. Consider the case that, by equalizing the
two binary exponents, f2.m is shifted to the right, thereby loosing two or more bits. Then
f1.m ≥ 239 and f2.m < 238. Therefore f1.m−f2.m > 238 and we can shift this difference
at most one place to the left without exceeding the capacity. If we keep the two bits most
recently shifted out we always have a rounding bit.

Alas, where in the case of addition proper we round upwards if the fractional part shifted
out is at least 0.5, in the case of subtraction proper we round downwards when that
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fractional part is more than 0.5. That is the case if the rounding bit is 1 and if at least
one of the bits beyond that rounding bit is 1. In stead of keeping all those bits we merely
register whether, beyond the two guarding bits, any bit equal to 1 got lost.

For that purpose we keep three guarding bits (hence 0 ≤ guard < 8), of which the least
significant one is the bit to register the loss of any non–zero bit beyond the two bits that
were shifted out most recently. Consider the case that, by equalizing binary exponents,
f2.m is shifted zero or more places to the right, possibly with loss of information. Using
g1 and g2 for the original values (i.e. before shifting) of f1 and f2, respectively, we have:

g2.m× 2g2.e = (f2.m+ α)× 2f2.e

for some rational value α with 0 ≤ α < 1. During shifting out f2.m, we keep variable
guard such that:

case guard of
0 : α = 0
1 : 0 < α < 1/4
2 : α = 1/4
3 : 1/4 < α < 1/2
4 : α = 1/2
5 : 1/2 < α < 3/4
6 : α = 3/4
7 : 3/4 < α < 1
end case

For guard we have the rule: once odd means odd forever.

For simplicity reasons we compute, during the procedure to equalize the two exponents,
the three–bit guard irrespective of the signs of the two numbers (equal or different).

In the case of equal signs we take m = f1.m+ f2.m and e = f1.e. Then:

(m+ α)× 2e = g1.m× 2g1.e + g2.m× 2g2.e

If m ≥ 240 we have to halve m, to increment e by one, and to adapt guard maintaining
the above relation.

Now the case of different signs. Let again f1.m > f2.m and take m = f1.m− f2.m and
e = f1.e. Then:

(m− α)× 2e = g1.m× 2g1.e − g2.m× 2g2.e

In order to be able to use a common rounding procedure for both cases (of equal and
unequal signs) we rewrite this, for the case that guard > 0, as:

((m− 1) + (1− α))× 2e = g1.m× 2g1.e − g2.m× 2g2.e
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and then replace m by m− 1, 1− α by α, and guard by 8− guard . Then we have:

(m+ α)× 2e = g1.m× 2g1.e − g2.m× 2g2.e

with again the relationship between guard and α given above.

If m < 239 we double m and decrement e by 1. This doubles α too, which thereby, in case
guard ≥ 4, become greater than 1. In that case we replace m by m + 1 (still m < 240,
no overflow!) and α by α − 1. Of course we have to adapt guard too. We do so in
the following manner: if guard < 4 then replace guard by 2 × guard and, otherwise, by
2× (guard − 4). Once more we have:

(m+ α)× 2e = g1.m× 2g1.e − g2.m× 2g2.e

now with the following relation between guard and α:

case guard of
0 : α = 0
2 : 0 < α < 1/2
4 : α = 1/2
6 : 1/2 < α < 1
end case

We conclude that in all cases we should round upwards if and only if guard ≥ 4. i.e.,
α ≥ 1/2. Again we have to do so carefully: if m = 240 − 1 and guard ≥ 4, the resulting
rounded value of m exceeds the mantissa capacity. In that case we set m = 239 and
increment e by one.

There are a number of special cases that are dealt with separately. If one of the operands
has a zero mantissa, the sum is just the value of the other operand. Also, if the difference
of the two exponents is too large, the smaller operand does not contribute to the (rounded)
sum. A limiting case where, by rounding, the smaller operand influences the sum is:

g1 = (+1, 1, e), g2 = (−1, 239 + 1, e− 80)

Then:

g1 + g2 = (240 − 1/2− 2−40)× 2e−40

rounding to (240 − 1)× 2e−40.

If, on the other hand, g2.e < g1.e − 80 and val .g1 6= 0, g2 is negligible: in that case
rnd .(g1 + g2) ∼= g1. For, since g2.e ≤ g1.e − 81 and g2.m < 240 ≤ g1.m × 240, we have
g2.m× 2g2.e < g1.m× 2g2.e+40 ≤ g1.m× 2g1.e−41 or |val .g2| < |val .g1| × 2−41 (cf. Section
2.2).

Note that a sum equal to zero results only if the two operands have equal values but
opposite signs:

(g1 + g2 = 0) ≡ (val .g1 = −val .g2)
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5.2 The resulting procedure

procedure f add(f2: f number);
{computes, for global f1, f1 := f1 + f2}
var m, e, guard: integer; s: sign;
begin {f1 = g1 ∧ f2 = g2}

let f1, f2 = (s1,m1,e1), (s2,m2,e2);
if (m1 = 0) or ((e1 < e2 − 80) and (m2 > 0)) → s, m, e := s2, m2, e2
[] (m2 = 0) or ((e2 < e1 − 80) and (m1 > 0)) → s, m, e := s1, m1, e1
[] (m1 > 0) and (m2 > 0) and (e1 − 80 ≤ e2 ≤ e1 + 80) →

guard := 0;
{equalize binary exponents by shifting the mantissa’s:}

if e1 ≥ e2 →
do (e1 > e2) and (m1 < 239)→ m1, e1 := m1 ∗ 2, e1 − 1 od;
do e1 > e2 →

if guard in [1,5] → guard := (m2 mod 2) ∗ 4 + guard div 2 + 1
[] not (guard in [1,5]) → guard := (m2 mod 2) ∗ 4 + guard div 2
fi;
m2, e2 := m2 div 2, e2 + 1

od
[] e1 ≤ e2 →

do (e1 < e2) and (m2 < 239)→ m2, e2 := m2 ∗ 2, e2 − 1 od;
do e1 < e2 →

if guard in [1,5] → guard := (m1 mod 2) ∗ 4 + guard div 2 + 1
[] not (guard in [1,5]) → guard := (m1 mod 2) ∗ 4 + guard div 2
fi;
m1, e1 := m1 div 2, e1 + 1

od
fi;
e := e1;

{add or subtract:}
if s1 = s2 →
{addition:}
m, s := m1 + m2, s1;
if m ≥ 240 →

if guard in [1,5] → guard := (m mod 2) ∗ 4 + guard div 2 + 1
[] not (guard in [1,5]) → guard := (m mod 2) ∗ 4 + guard div 2
fi;
m, e := m div 2, e + 1

[] m < 240 → skip
fi;

[] s1 6= s2 →
{subtraction:}
if m1 ≥ m2 → m, s := m1 − m2, s1
[] m1 < m2 → m, s := m2 − m1, s2
fi;
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if guard > 0→ m, guard := m − 1, 8 − guard
[] guard = 0 → skip
fi;
if m < 239 → m, e, guard := 2 ∗ m + guard div 4, e − 1, (guard mod 4) ∗ 2
[] m ≥ 239 → skip
fi

fi;
{round:}

if guard ≥ 4→
if m = 240 − 1→ m, e := 239, e + 1
[] m < 240 − 1→ m := m + 1
fi

[] guard < 4 → skip
fi

fi;
{form result:}

f1 := (s,m,e);
standardize(f1)

{f1 ∼= rnd .(g1 + g2) ∧ f1 in standard form}
end {f add};

5.3 Correctness proof of f add

Once more we have an assertion that holds and is used throughout the proof and which
should augment all other assertions:

P = 0 ≤ g1.m < 240 ∧ 0 ≤ g2.m < 240 ∧ s1 = g1.s ∧ s2 = g2.s ∧
0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8

We consider here only the case that both m1 > 0 and m2 > 0 and e1−80 ≤ e2 ≤ e1+80.

We start by proving the correctness of the code for equalizing the two mantissa’s. We do
so by proving correct a different, but, from an operational view point, equivalent code:

23



{f1 = g1 ∧ f2 = g2 ∧ guard = 0}
if e1 ≥ e2 →

do (e1 > e2) and (m1 < 239)→ m1, e1 := m1 ∗ 2, e1 − 1 od;
{P0}
if e1 > e2 →
{P0 ∧ e1 > e2, hence I1}
do e1 > e2 →

if guard in [1,5] → guard := (m2 mod 2) ∗ 4 + guard div 2 + 1
[] not (guard in [1,5]) → guard := (m2 mod 2) ∗ 4 + guard div 2
fi;
m2, e2 := m2 div 2, e2 + 1
{I1}

od
{P1}

[] e1 = e2 → skip
{P1}

fi
{P1}

[] e1 ≤ e2 → · · · {analogous code}
{P1

′}
fi
{P1 ∨ P1

′}

where

P0 = e1 ≥ e2 ∧
guard = 0 ∧
(e1 = e2 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e

P1 = e1 = e2 ∧
(guard = 0 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
Pc

Pc = case guard of
0 : m2× 2e2 = g2.m× 2g2.e

1 : m2 < 237 ∧m2× 2e2 < g2.m× 2g2.e < (m2 + 1/4)× 2e2

2 : m2 < 238 ∧ (m2 + 1/4)× 2e2 = g2.m× 2g2.e

3 : m2 < 237 ∧ (m2 + 1/4)× 2e2 < g2.m× 2g2.e < (m2 + 1/2)× 2e2

4 : m2 < 239 ∧ (m2 + 1/2)× 2e2 = g2.m× 2g2.e

5 : m2 < 237 ∧ (m2 + 1/2)× 2e2 < g2.m× 2g2.e < (m2 + 3/4)× 2e2

6 : m2 < 238 ∧ (m2 + 3/4)× 2e2 = g2.m× 2g2.e

7 : m2 < 237 ∧ (m2 + 3/4)× 2e2 < g2.m× 2g2.e < (m2 + 1)× 2e2

end case

and P1
′ and Pc

′ to be obtained from P1 and Pc by interchanging m1 and m2, e1 and e2,
and g1 and g2, and replacing Pc by Pc

′.

The clause (guard = 0 ∨m1 ≥ 239) in P1 guarantees that, in case of loss of precision in

24



m2 (guard ∈ 1, 3, 5, 7), m1 was shifted maximally to the left.

For a proof of P0 use invariant:

I0 = e1 ≥ e2 ∧
guard = 0 ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e

and for a proof of P1 invariant I1, reading:

I1 = e1 ≥ e2 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
Pc

Next we first deal with addition proper, i.e. the case that the signs s1 and s2 are equal.
Then we have to add the two mantissa’s m1 and m2 (the two binary exponents being
equal now) and to incorporate the guard. We state:

{e = e1 = e2 ∧ (P1 ∨ P1
′) ∧ s1 = s2}

m, s := m1 + m2, s1;
{P2}
if (m ≥ 240) and (guard in [1,5]) →

m, e, guard := m div 2, e + 1, (m mod 2) ∗ 4 + guard div 2 + 1
[] (m ≥ 240) and not (guard in [1,5]) →

m, e, guard := m div 2, e + 1, (m mod 2) ∗ 4 + guard div 2
[] m < 240 → skip
fi
{P3}

where

P2 = s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m× 2e < |g1 + g2| < (m+ 1/4)× 2e

2 : (m+ 1/4)× 2e = |g1 + g2|
3 : (m+ 1/4)× 2e < |g1 + g2| < (m+ 1/2)× 2e

4 : (m+ 1/2)× 2e = |g1 + g2|
5 : (m+ 1/2)× 2e < |g1 + g2| < (m+ 3/4)× 2e

6 : (m+ 3/4)× 2e = |g1 + g2|
7 : (m+ 3/4)× 2e < |g1 + g2| < (m+ 1)× 2e

end case

and P3 = (P2 ∧m < 240).

If, on the other hand, the two signs s1 and s2 are unequal, we must subtract the two
mantissas. Note that m1 ≥ m2 ∧ guard > 0 ∧ (P1 ∨ P1

′) implies P1. We state:
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{e = e1 = e2 ∧ (P1 ∨ P1
′) ∧ s1 6= s2}

if m1 ≥ m2 → m, s := m1 − m2, s1
[] m1 < m2 → m, s := m2 − m1, s2
fi;
{P4}
if guard > 0→ m, guard := m − 1, 8 − guard
[] guard = 0 → skip
fi
{P5}

where

P4 = s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m > 238 + 237 ∧ (m− 1/4)× 2e < |g1 + g2| < m× 2e

2 : m > 238 ∧ (m− 1/4)× 2e = |g1 + g2|
3 : m > 238 + 237 ∧ (m− 1/2)× 2e < |g1 + g2| < (m− 1/4)× 2e

4 : m > 1 ∧ (m− 1/2)× 2e = |g1 + g2|
5 : m > 238 + 237 ∧ (m− 3/4)× 2e < |g1 + g2| < (m− 1/2)× 2e

6 : m > 238 ∧ (m− 3/4)× 2e = |g1 + g2|
7 : m > 238 + 237 ∧ (m− 1)× 2e < |g1 + g2| < (m− 3/4)× 2e

end case

and

P5 = s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m ≥ 238 + 237 ∧ m× 2e < |g1 + g2| < (m+ 1/4)× 2e

2 : m ≥ 238 ∧ (m+ 1/4)× 2e = |g1 + g2
3 : m ≥ 238 + 237 ∧ (m+ 1/4)× 2e < |g1 + g2| < (m+ 1/2)× 2e

4 : m ≥ 1 ∧ (m+ 1/2)× 2e = |g1 + g2|
5 : m ≥ 238 + 237 ∧ (m+ 1/2)× 2e < |g1 + g2| < (m+ 3/4)× 2e

6 : m ≥ 238 ∧ (m+ 3/4)× 2e = |g1 + g2|
7 : m ≥ 238 + 237 ∧ (m+ 3/4)× 2e < |g1 + g2| < (m+ 1)× 2e

end case

Next we have:

{P5}
if m < 239 → m, e, guard := 2 ∗ m + guard div 4, e − 1, (guard mod 4) ∗ 2 {P6}
[] m ≥ 239 → skip {P3}
fi
{P3 ∨ P6}

with
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P6 = s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(guard = 0 ∨m ≥ 239) ∧
even.guard ∧
case guard of
0 : m× 2e = |g1 + g2|
2 : m× 2e < |g1 + g2| < (m+ 1/2)× 2e

4 : (m+ 1/2)× 2e = |g1 + g2|
6 : (m+ 1/2)× 2e < |g1 + g2| < (m+ 1)× 2e

end case

Finally we state:

{P3 ∨ P6}
if guard ≥ 4→

if m = 240 − 1→ m, e := 239, e + 1
[] m < 240 − 1→ m := m + 1
fi

[] guard < 4 → skip
fi
{P7}

where

P7 = s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(m ≥ 239 ∨m× 2e = |g1 + g2|) ∧
(m− 1/2)× 2e ≤ |g1 + g2| < (m+ 1/2)× 2e ∧
(m = 239 → (m− 1/4)× 2e ≤ |g1 + g2|)

From P7 we conclude that for m ≥ 239 indeed (s,m, e) = rnd .(g1 + g2), whereas for
m < 239 we have (s, |g1 + g2|, 0) ∈ F ∧m× 2e = |g1 + g2|, hence (s,m, e) ∼= rnd .(g1 + g2)
(c.f. Section 2.2. property 3).

5.4 Final remarks

For the case of addition the correctness proof was lengthy and tedious, but no clever
inventions were needed. It was tedious due to the many cases that had to be discriminated,
both in the assertions and in the proofs themselves. But it was, having an operational
picture in mind, not too hard to device the assertions. In Pc, for example, we have
the knowledge that for odd values of guard at least 3 bits of m2 have been shifted out,
hence m2 < 237. We use the latter information in P4 for the conclusion that in these
cases m > 238, implying that at most one shift to the left will bring m in the interval
[239, 240 − 1].

Note that P4 is in fact stronger than is needed for that purpose. The following, slightly
weaker version of it would already do the job:
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P4 = s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m > 238 ∧ (m− 1/4)× 2e < |g1 + g2| < m× 2e

2 : m > 238 ∧ (m− 1/4)× 2e = |g1 + g2|
3 : m > 238 ∧ (m− 1/2)× 2e < |g1 + g2| < (m− 1/4)× 2e

4 : m > 1 ∧ (m− 1/2)× 2e = |g1 + g2|
5 : m > 238 ∧ (m− 3/4)× 2e < |g1 + g2| < (m− 1/2)× 2e

6 : m > 238 ∧ (m− 3/4)× 2e = |g1 + g2|
7 : m > 238 ∧ (m− 1)× 2e < |g1 + g2| < (m− 3/4)× 2e

end case

implying also a weaker version of P5.

The doubling of m in the cases guard = 0 or 4 does not necessarily lead to a value of m
of at least 239. That does, however, no harm: in that case the doubled value of m is exact
and the rounding step amounts to just a skip.

28



6 Discussion

The correctness proofs of the three algorithms presented in this report, using the method
of weakest–precondition logic, were much harder to conceive and much more tedious
than I had anticipated. Certainly if I compare these with the relative ease by which the
algorithms themselves were designed using operational arguments.

This can imply that my skillfulness in applying this proof method is too low. But it can
also imply that the method is not well suited to this kind of algorithms, and that another
proof method would have been more appropriate. I do not really know what is the case
here. It would be interesting to see what automated verification could achieve.

Let me try to sum up some of my experiences.

One of the nice things of all the assertions needed in the proofs is that they make explicit,
at each stage of the algorithms, what state is arrived at and what knowledge is available.
Somehow they embody the operational arguments by which the algorithms were designed.

A first version of the assertions was found just by these operational arguments. In doing
the actual correctness proofs some assertions had to be reinforced, and it took some inge-
nuity to find the reinforcement really needed. Actually, the proofs of the proof obligations
were, in general, trivial; a rather restricted number of hints suffices for an easy verification
(cf. Appendix A). The work of constructing the correctness proofs was just in the design
of the appropriate assertions.

The careful design by operational arguments lead to almost correct algorithms for multi-
plication, division and addition, and only one small correction of an exceptional case was
needed. The correctness proofs were, therefore, essential.

It is often advocated that algorithms should be designed and proved hand in hand, if not
the algorithm should be derived from the proofs. But I do not see how, in our case, the
latter could have been carried out.

In the actual emulation quite a lot of additional details had to be programmed. The num-
ber representation of the EL X8 was in one–complement, with preference for −0 over +0
(I have not analyzed whether an implementation directly in the one–complement rep-
resentation needs more, or perhaps less guarding bits).The binary exponent had to be
restricted to 12 bits (including its sign bit), leading to overflow and underflow conditions.
The 40 bits of the mantissa had to be divided over two Pascal integer variables. It was
a wise decision to use separation of concerns and to not incorporate these details in the
overall design of the algorithms.
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A Proof details

In this appendix we list the proof obligations in terms of the assertions given in the proof
sections of the paper. We again use notation

Q[x/y]

for assertion Q with y substituted for x.
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A1: Multiplication

Since neither g1 nor g2 is changed by the algorithm we take from invariant P only the
part:

0 ≤ m1 < 242 ∧ 0 ≤ m2

1. (P ∧ f1 = g1 ∧ f2 = g2 ∧ g2.m > 0)
⇒
(P ∧ I0) [m/0, e/0]

i.e.

(P ∧ f1 = g1 ∧ f2 = g2 ∧ g2.m > 0)
⇒
(P ∧
0 ≤ 0 ≤ m1 ∧
0 ≤ 0 ∧
(m1 < 241 → 0 = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ 0) ∧
(0 + m1×m2)× 20 ≤ g1.m× g2.m < (0 + 1 + m1×m2)× 20

)

2. (P ∧ I0 ∧m2 > 0 ∧ odd .m2)
⇒
(P ∧ P0) [m/m + m1, m2/m2− 1]

i.e.

(0 ≤ m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
m2 > 0 ∧
odd .m2

)
⇒
(0 ≤ m1 < 242 ∧ 0 ≤ m2− 1 ∧
0 ≤ m + m1 ≤ 2×m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2− 1 > 0 ∨m1 ≤ m + m1) ∧
(m + m1 + m1× (m2− 1))× 2e ≤ g1.m× g2.m <

(m + m1 + 1 + m1× (m2− 1))× 2e ∧
even.(m2− 1)

)
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3. (P ∧ I0 ∧m2 > 0 ∧ even.m2)
⇒
(P ∧ P0)

i.e.

(P ∧
0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
m2 > 0 ∧
even.m2

)
⇒
(P ∧
0 ≤ m ≤ 2×m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
even.m2

)

4. (P ∧ P0 ∧m1 < 241)
⇒
(P ∧ P1) [m1/2×m1]

i.e.

(0 ≤ m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m ≤ 2×m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
even.m2 ∧
m1 < 241

)
⇒
(0 ≤ 2×m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m ≤ 2×m1 ∧
0 ≤ e ∧
(2×m1 < 241 → e = 0) ∧
(m2 > 0 ∨ (2×m1)÷ 2 ≤ m) ∧
(m + 2×m1× (m2÷ 2))× 2e ≤ g1.m× g2.m < (m + 1 + 2×m1× (m2÷ 2))× 2e ∧
even.m2

)
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5. (P ∧ P0 ∧m1 ≥ 241)
⇒
(P ∧ P1) [m/m÷ 2, e/e + 1]

i.e.

(P ∧
0 ≤ m ≤ 2×m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
even.m2 ∧
m1 ≥ 241

)
⇒
(P ∧
0 ≤ m÷ 2 ≤ m1 ∧
0 ≤ e + 1 ∧
(m1 < 241 → e + 1 = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m÷ 2) ∧
(m÷ 2 + m1× (m2÷ 2))× 2e+1 ≤ g1.m× g2.m <

(m÷ 2 + 1 + m1× (m2÷ 2))× 2e+1 ∧
even.m2 ∧

)
{Since m− 1 ≤ 2× (m÷ 2) ≤ m for integral m ≥ 0 and 2× (m2÷ 2) = m2 for even m2 we have:

(m÷ 2 + m1× (m2÷ 2))× 2e+1

≤ (m + m1×m2)× 2e

≤ g1.m× g2.m
< (m + 1 + m1×m2)× 2e

≤ (m÷ 2 + 1 + m1× (m2÷ 2))× 2e+1 }
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6. (P ∧ P1)
⇒
(P ∧ I0) [m2/m2÷ 2]

i.e.

(0 ≤ m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m + m1× (m2÷ 2))× 2e ≤ g1.m× g2.m < (m + 1 + m1× (m2÷ 2))× 2e ∧
even.m2

)
⇒
(0 ≤ m1 < 242 ∧ 0 ≤ m2÷ 2 ∧
0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2÷ 2 > 0 ∨m1÷ 2 ≤ m) ∧
(m + m1× (m2÷ 2))× 2e ≤ g1.m× g2.m < (m + 1 + m1× (m2÷ 2))× 2e

)
{From even.m2 ∧m2 > 0 follows m2 ≥ 2, hence also m2÷ 2 > 0 }

7. (P ∧ I0 ∧m2 = 0)
⇒
(P ∧ P2)

i.e.

(0 ≤ m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m ≤ m1 ∧
0 ≤ e ∧
(m1 < 241 → e = 0) ∧
(m2 > 0 ∨m1÷ 2 ≤ m) ∧
(m + m1×m2)× 2e ≤ g1.m× g2.m < (m + 1 + m1×m2)× 2e ∧
m2 = 0

)
⇒
(0 ≤ m1 < 242 ∧ 0 ≤ m2 ∧
0 ≤ m < 242 ∧
0 ≤ e ∧
(m < 240 → e = 0) ∧
m× 2e ≤ g1.m× g2.m < (m + 1)× 2e

)
{ m < 240 ∧m2 = 0
⇒ m < 240 ∧m1÷ 2 ≤ m
⇒ m1÷ 2 < 240

⇒ m1÷ 2 ≤ 240 − 1
⇒ m1 ≤ 2× (240 − 1) + 1
⇒ m1 ≤ 241 − 1
⇒ m1 < 241 }
⇒ e = 0
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8. (P ∧ P2)
⇒
(P ∧ I1) [guard = 0]

i.e.

(P ∧
0 ≤ m < 242 ∧
0 ≤ e ∧
(m < 240 → e = 0) ∧
m× 2e ≤ g1.m× g2.m < (m + 1)× 2e

)
⇒
(P ∧
0 ≤ m < 242 ∧
0 ≤ e ∧
0 ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (0 = 0 ∧m = g1.m× g2.m)) ∧
(m + 0/2)× 2e ≤ g1.m× g2.m < (m + 1)× 2e ∧
(m < 240 → g1.m× g2.m < (m + 0/2 + 1/2)× 2e)

)

9. (P ∧ I1 ∧m ≥ 240)
⇒
(P ∧ I1) [guard/m mod 2, m/m÷ 2, e/e + 1]

i.e.

(P ∧
0 ≤ m < 242 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + 1)× 2e ∧
(m < 240 → g1.m× g2.m < (m + guard/2 + 1/2)× 2e) ∧
m ≥ 240

)
⇒
(P ∧
0 ≤ m÷ 2 < 242 ∧
0 ≤ e + 1 ∧
m mod 2 ∈ [0, 1] ∧
(m÷ 2 < 239 → e + 1 = 0) ∧
(e + 1 > 0 ∨ (m mod 2 = 0 ∧m÷ 2 = g1.m× g2.m)) ∧
(m÷ 2 + (m mod 2)/2)× 2e+1 ≤ g1.m× g2.m < (m÷ 2 + 1)× 2e+1 ∧
(m÷ 2 < 240 → g1.m× g2.m < (m÷ 2 + (m mod 2)/2 + 1/2)× 2e+1)

)
{m = 2× (m÷ 2 + (m mod 2)/2), hence m + 1 ≤ 2× (m÷ 2) + 2 }
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10. (P ∧ I1 ∧m < 240)
⇒
(P ∧ P3)

i.e.

(P ∧
0 ≤ m < 242 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + 1)× 2e ∧
(m < 240 → g1.m× g2.m < (m + guard/2 + 1/2)× 2e) ∧
m < 240

)
⇒
(P ∧
0 ≤ m < 240 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + guard/2 + 1/2)× 2e

)

11. (P ∧ P3 ∧ guard = 1 ∧m = 240 − 1)
⇒
(P ∧R) [m/239, e/e + 1]

i.e.

(P ∧
0 ≤ m < 240 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + guard/2 + 1/2)× 2e ∧
guard = 1 ∧
m = 240 − 1

)
⇒
(P ∧
0 ≤ 239 < 240 ∧
0 ≤ e + 1 ∧
(239 < 239 → e + 1 = 0) ∧
(e + 1 > 0 ∨ 239 = g1.m× g2.m) ∧
(239 − 1/2)× 2e+1 ≤ g1.m× g2.m < (239 + 1/2)× 2e+1 ∧
(239 = 239 → (239 − 1/4)× 2e+1 ≤ g1.m× g2.m)

)
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12. (P ∧ P3 ∧ guard = 1 ∧m < 240 − 1)
⇒
(P ∧R) [m/m + 1]

i.e.

(P ∧
0 ≤ m < 240 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + guard/2 + 1/2)× 2e ∧
guard = 1 ∧
m < 240 − 1

)
⇒
(P ∧
0 ≤ m + 1 < 240 ∧
0 ≤ e ∧
(m + 1 < 239 → e = 0) ∧
(e > 0 ∨m + 1 = g1.m× g2.m) ∧
(m + 1− 1/2)× 2e ≤ g1.m× g2.m < (m + 1 + 1/2)× 2e ∧
(m + 1 = 239 → (m + 1− 1/4)× 2e ≤ g1.m× g2.m)

)
{guard = 1 implies e > 0, hence m ≥ 239 and ¬ (m + 1 = 239) }

13. (P ∧ P3 ∧ guard = 0)
⇒
(P ∧R)

i.e.

(P ∧
0 ≤ m < 240 ∧
0 ≤ e ∧
guard ∈ [0, 1] ∧
(m < 239 → e = 0) ∧
(e > 0 ∨ (guard = 0 ∧m = g1.m× g2.m)) ∧
(m + guard/2)× 2e ≤ g1.m× g2.m < (m + guard/2 + 1/2)× 2e ∧
guard = 0

)
⇒
(P ∧
0 ≤ m < 240 ∧
0 ≤ e ∧
(m < 239 → e = 0) ∧
(e > 0 ∨m = g1.m× g2.m) ∧
(m− 1/2)× 2e ≤ g1.m× g2.m < (m + 1/2)× 2e ∧
(m = 239 → (m− 1/4)× 2e ≤ g1.m× g2.m)

)
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A2: Division

Since neither g1 nor g2 is changed by the algorithm we take for invariant P only the part:

0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240

(Recall that we consider only the case that both g1.m > 0 and g2.m > 0.)

1. (P ∧ f1 = g1 ∧ f2 = g2)
⇒
(P ∧ I0) [e/0]

i.e.

(P ∧ f1 = g1 ∧ f2 = g2)
⇒
(P ∧
(m1 < 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 20 = g1.m/g2.m

)
{g1.m < 240, hence m1 < 240}

2. (P ∧ I0 ∧m1 ≥ 2×m2)
⇒
(P ∧ I0) [m2/2×m2, e/e + 1]

i.e.

(0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240 ∧
(m1 < 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m ∧
m1 ≥ 2×m2

)
⇒
(0 ≤ m1 < 241 ∧ 1 ≤ 2×m2 < 240 ∧
(m1 < 2× 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/(2×m2)× 2e+1 = g1.m/g2.m

)
{m1 ≥ 2×m2, hence m1 < 240 and so 2×m2 < 240}
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3. (P ∧ I0 ∧m1 < m2)
⇒
(P ∧ I0) [m1/2×m1, e/e− 1]

i.e.

(0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240 ∧
(m1 < 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m ∧
m1 < m2

)
⇒
(0 ≤ 2×m1 < 241 ∧ 1 ≤ m2 < 240 ∧
(2×m1 < 2×m2 ∨ 2×m1 < 240) ∧
(2×m1 < 240 ∨ even.(2×m1)) ∧
((2×m1)/m2)× 2e−1 = g1.m/g2.m

)
{m1 < m2, hence m1 < 240}

4. (P ∧ I0 ∧m1 < 2×m2 ∧m1 ≥ m2)
⇒
(P ∧ P0

′)

i.e.

(P ∧
(m1 < 2×m2 ∨m1 < 240) ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m ∧
m1 < 2×m2 ∧
m1 ≥ m2

)
⇒
(P ∧
1 ≤ m1/m2 < 2 ∧
(m1 < 240 ∨ even.m1) ∧
(m1/m2)× 2e = g1.m/g2.m

)
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5. (P ∧ P0)
⇒
(P ∧ I1) [m/0, i/0]

i.e.

(P ∧
1 ≤ m1/m2 ≤ 2− 2−39 ∧
(m1/m2)× 2e = g1.m/g2.m

)
⇒
(P ∧
0 ≤ 0 ≤ 40 ∧
0 ≤ 0 < 20 ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(0 + m1/(2×m2))× 2e−0+1 = g1.m/g2.m

)

6. (P ∧ I1 ∧ i < 40 ∧m1 ≥ m2)
⇒
(P ∧ I1) [m/2×m + 1, m1/2× (m1−m2), i/i + 1]

i.e.

(0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240 ∧
0 ≤ i ≤ 40 ∧
0 ≤ m < 2i ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−i+1 = g1.m/g2.m ∧
i < 40 ∧
m1 ≥ m2

)
⇒
(0 ≤ 2× (m1−m2) < 241 ∧ 1 ≤ m2 < 240 ∧
0 ≤ i + 1 ≤ 40 ∧
0 ≤ 2×m + 1 < 2i+1 ∧
0 ≤ (2× (m1−m2))/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
((2×m + 1 + 2× (m1−m2))/(2×m2))× 2e−(i+1)+1 = g1.m/g2.m

)
{m2/m1 > 1/2, hence

2× (m1−m2)
= 2×m1× (1−m2/m1)
< 2×m1× (1− 1/2)
= m1}
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7. (P ∧ I1 ∧ i < 40 ∧m1 < m2)
⇒
(P ∧ I1) [m/2×m, m1/2×m1, i/i + 1]

i.e.

(0 ≤ m1 < 241 ∧ 1 ≤ m2 < 240 ∧
0 ≤ i ≤ 40 ∧
0 ≤ m < 2i ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−i+1 = g1.m/g2.m ∧
i < 40 ∧
m1 < m2

)
⇒
(0 ≤ 2×m1 < 241 ∧ 1 ≤ m2 < 240 ∧
0 ≤ i + 1 ≤ 40 ∧
0 ≤ 2×m < 2i+1 ∧
0 ≤ (2×m1)/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(2×m + (2×m1)/(2×m2))× 2e−(i+1)+1 = g1.m/g2.m

)
{m1 < m2, hence

2×m1
< 2×m2
< 2× 240

= 241}

8. (P ∧ I1 ∧ i ≥ 40)
⇒
(P ∧ P1)

i.e.

(P ∧
0 ≤ i ≤ 40 ∧
0 ≤ m < 2i ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−i+1 = g1.m/g2.m ∧
i ≥ 40

)
⇒
(P ∧
239 ≤ m < 240 ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−39 = g1.m/g2.m

)
{ 239

≤ (g1.m/g2.m)× 239−e

= m + m1/(2×m2)
< m + 1,

hence 239 ≤ m}
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9. (P ∧ P1 ∧m1 ≥ m2)
⇒
(P ∧ P2) [m/m + 1]

i.e.

(P ∧
239 ≤ m < 240 ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−39 = g1.m/g2.m ∧
m1 ≥ m2

)
⇒
(P ∧
239 ≤ m + 1 < 240 ∧
(m + 1− 1/2)× 2e−39 ≤ g1.m/g2.m < (m + 1 + 1/2)× 2e−39 ∧
(m + 1 = 239 → (m + 1)× 2e−39 ≤ g1.m/g2.m)

)
{ m + 1
< m + m1/(2×m2) + 1
= (g1.m/g2.m)× 239−e + 1
≤ (2− 2−39)× 239 + 1
= 240}

10. (P ∧ P1 ∧m1 < m2)
⇒
(P ∧ P2)

i.e.

(P ∧
239 ≤ m < 240 ∧
0 ≤ m1/m2 < 2 ∧
2e ≤ g1.m/g2.m ≤ (2− 2−39)× 2e ∧
(m + m1/(2×m2))× 2e−39 = g1.m/g2.m ∧
m1 < m2

)
⇒
(P ∧
239 ≤ m < 240 ∧
(m− 1/2)× 2e−39 ≤ g1.m/g2.m < (m + 1/2)× 2e−39 ∧
(m = 239 → m× 2e−39 ≤ g1.m/g2.m)

)
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A3: Addition

Since g1, g2, s1, nor s2 are changed by the algorithm we take from invariant P only the
part:

0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8

1. (P ∧ f1 = g1 ∧ f2 = g2 ∧ guard = 0 ∧ e1 ≥ e2)
⇒
(P ∧ I0)

i.e.

(P ∧ f1 = g1 ∧ f2 = g2 ∧ guard = 0 ∧ e1 ≥ e2)
⇒
(P ∧
e1 ≥ e2 ∧
guard = 0 ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e

)

2. (P ∧ I0 ∧ e1 > e2 ∧m1 < 239)
⇒
(P ∧ I0) [m1/m1× 2, e1/e1− 1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e1 ≥ e2 ∧
guard = 0 ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e ∧
e1 > e2 ∧
m1 < 239

)
⇒
(0 ≤ m1× 2 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e1− 1 ≥ e2 ∧
guard = 0 ∧
m1× 2× 2e1−1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e

)
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3. (P ∧ I0 ∧ (e1 ≤ e2 ∨m1 ≥ 239))
⇒
(P ∧ P0)

i.e.

(P ∧
e1 ≥ e2 ∧
guard = 0 ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e ∧
(e1 ≤ e2 ∨m1 ≥ 239)

)
⇒
(P ∧
e1 ≥ e2 ∧
guard = 0 ∧
(e1 = e2 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e

)

4. (P ∧ P0 ∧ e1 > e2)
⇒
(P ∧ I1)

i.e.

(P ∧
e1 ≥ e2 ∧
guard = 0 ∧
(e1 = e2 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e ∧
e1 > e2

)
⇒
(P ∧
e1 ≥ e2 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 0 ∧m2× 2e2 = g2.m× 2g2.e

)
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5. {two out of 16 cases4:}

5a. (P ∧ I1 ∧ e1 > e2 ∧ guard = 3 ∧m2 = 2× (m2÷ 2))
⇒
(P ∧ I1) [guard/(m2 mod 2)× 4 + guard ÷ 2, m2/m2÷ 2, e2/e2 + 1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e1 ≥ e2 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 3 ∧m2 < 237 ∧ (m2 + 1/4)× 2e2 < g2.m× 2g2.e < (m2 + 1/2)× 2e2 ∧
e1 > e2 ∧
m2 = 2× (m2÷ 2)

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2÷ 2 < 240 ∧ 0 ≤ (m2 mod 2)× 4 + guard ÷ 2 < 8 ∧
e1 ≥ e2 + 1 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
(m2 mod 2)× 4 + guard ÷ 2 = 1 ∧m2÷ 2 < 237 ∧

m2÷ 2× 2e2+1 < g2.m× 2g2.e < (m2÷ 2 + 1/4)× 2e2+1

)5

5b. (P ∧ I1 ∧ e1 > e2 ∧ guard = 4 ∧m2 = 2× (m2÷ 2) + 1)
⇒
(P ∧ I1) [guard/(m2 mod 2)× 4 + guard ÷ 2, m2/m2÷ 2, e2/e2 + 1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e1 ≥ e2 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 4 ∧m2 < 239 ∧ (m2 + 1/2)× 2e2 = g2.m× 2g2.e ∧
e1 > e2 ∧
m2 = 2× (m2÷ 2) + 1

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2÷ 2 < 240 ∧ 0 ≤ (m2 mod 2)× 4 + guard ÷ 2 < 8 ∧
e1 ≥ e2 + 1 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
(m2 mod 2)× 4 + guard ÷ 2 = 6 ∧m2÷ 2 < 238 ∧

(m2÷ 2 + 3/4)× 2e2+1 = g2.m× 2g2.e

)

416 cases by eight values for guard combined with odd or even values of m2.
5leading, after the assignment, to Pc with guard = 1.
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6. (P ∧ I1 ∧ e1 ≤ e2)
⇒
(P ∧ P1)

i.e.

(P ∧
e1 ≥ e2 ∧
m1 ≥ 239 ∧
m1× 2e1 = g1.m× 2g1.e ∧
Pc ∧
e1 ≤ e2

)
⇒
(P ∧
e1 = e2 ∧
(guard = 0 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
Pc

)

7. (P ∧ P0 ∧ e1 = e2)
⇒
(P ∧ P1)

i.e.

(P ∧
e1 ≥ e2 ∧
guard = 0 ∧
(e1 = e2 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
m2× 2e2 = g2.m× 2g2.e ∧
e1 = e2

)
⇒
(P ∧
e1 = e2 ∧
(guard = 0 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 0 ∧m2× 2e2 = g2.m× 2g2.e

)
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8. {one out of 8 cases:}
(P ∧ e = e1 = e2 ∧ (P1 ∨ P1

′) ∧ guard = 7 ∧ s1 = s2)
⇒
(P ∧ P2) [m/m1 + m2, s/s1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e = e1 = e2 ∧
(e1 = e2 ∧
(guard = 0 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 7 ∧m2 < 237 ∧ (m2 + 3/4)× 2e2 < g2.m× 2g2.e < (m2 + 1)× 2e2

∨
e2 = e1 ∧
(guard = 0 ∨m2 ≥ 239) ∧
m2× 2e2 = g2.m× 2g2.e ∧
guard = 7 ∧m1 < 237 ∧ (m1 + 3/4)× 2e1 < g1.m× 2g1.e < (m1 + 1)× 2e1

) ∧
s1 = s2

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s1 = sign.(g1 + g2) ∧
0 ≤ m1 + m2 < 241 ∧
(guard = 0 ∨m1 + m2 ≥ 239) ∧
guard = 7 ∧ (m1 + m2 + 3/4)× 2e < |g1 + g2| < (m1 + m2 + 1)× 2e

)
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9. {two out of 16 cases}:

9a: (P ∧ P2 ∧m ≥ 240 ∧ guard = 5 ∧m = 2× (m÷ 2))
⇒
(P ∧ P3) [m/m÷ 2, e/e + 1, guard/(m mod 2)× 4 + guard ÷ 2 + 1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
guard = 5 ∧ (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e ∧
m ≥ 240 ∧
m = 2× (m÷ 2)

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ (m mod 2)× 4 + guard ÷ 2 + 1 < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m÷ 2 < 241 ∧
((m mod 2)× 4 + guard ÷ 2 + 1 = 0 ∨m÷ 2 ≥ 239) ∧
(m mod 2)× 4 + guard ÷ 2 + 1 = 3 ∧

(m÷ 2 + 1/4)× 2e+1 < |g1 + g2| < (m÷ 2 + 1/2)× 2e+1

m÷ 2 < 240

)

9b: (P ∧ P2 ∧m ≥ 240 ∧ guard = 4 ∧m = 2× (m÷ 2) + 1)
⇒
(P ∧ P3) [m/m÷ 2, e/e + 1, guard/(m mod 2)× 4 + guard ÷ 2]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
guard = 4 ∧ (m + 1/2)× 2e = |g1 + g2| ∧
m ≥ 240 ∧
m = 2× (m÷ 2) + 1

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ (m mod 2)× 4 + guard ÷ 2 < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m÷ 2 < 241 ∧
((m mod 2)× 4 + guard ÷ 2 = 0 ∨m÷ 2 ≥ 239) ∧
(m mod 2)× 4 + guard ÷ 2 = 6 ∧ (m÷ 2 + 3/4)× 2e+1 = |g1 + g2|
m÷ 2 < 240

)
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10. (P ∧ P2 ∧m < 240)
⇒
(P ∧ P3)

i.e.

(P ∧ P2 ∧m < 240)
⇒
(P ∧ P2 ∧m < 240)

11. one out of 8 cases

(P ∧ e = e1 = e2 ∧ (P1 ∨ P1
′) ∧ guard = 1 ∧ s1 6= s2 ∧m1 ≥ m2)

⇒
(P ∧ P4) [m/m1−m2, s/s1]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
e = e1 = e2 ∧
(e1 = e2 ∧
(guard = 0 ∨m1 ≥ 239) ∧
m1× 2e1 = g1.m× 2g1.e ∧
guard = 1 ∧m2 < 237 ∧m2× 2e2 < g2.m× 2g2.e < (m2 + 1/4)× 2e2

∨
e2 = e1 ∧
(guard = 0 ∨m2 ≥ 239) ∧
m2× 2e2 = g2.m× 2g2.e ∧
guard = 1 ∧m1 < 237 ∧m1× 2e1 < g1.m× 2g1.e < (m1 + 1/4)× 2e1

) ∧
s1 6= s2 ∧
m1 ≥ m2

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s1 = sign.(g1 + g2) ∧
0 ≤ m1−m2 < 240 ∧
guard = 1 ∧

m1−m2 > 238 + 237 ∧ (m1−m2− 1/4)× 2e < |g1 + g2| < (m1−m2)× 2e

)

12. one out of 8 cases

(P ∧ e = e1 = e2 ∧ (P1 ∨ P1
′) ∧ guard = 1 ∧ s1 6= s2 ∧m1 < m2)

⇒
(P ∧ P4) [m/m2−m1, s/s2]

analogous
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13. one out of 7 cases

(P ∧ P4 ∧ guard = 1)
⇒
(P ∧ P5) [m/m− 1, guard/8− guard ]

i.e.

(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
guard = 1 ∧m > 238 + 237 ∧ (m− 1/4)× 2e < |g1 + g2| < m× 2e

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ 8− guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m− 1 < 240 ∧
8− guard = 7 ∧m− 1 ≥ 238 + 237 ∧

(m− 1 + 3/4)× 2e < |g1 + g2| < (m− 1 + 1)× 2e

)

14. (P ∧ P4 ∧ guard = 0)
⇒
(P ∧ P5)

i.e.
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
guard = 0 ∧m× 2e = |g1 + g2|

)
⇒
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
guard = 0 ∧m× 2e = |g1 + g2|

)
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15. two out of 8 cases

15a. (P ∧ P5 ∧m < 239 ∧ guard = 4
⇒
(P ∧ P6) [m/2×m + guard ÷ 4, e/e− 1, guard/(guard mod 4)× 2]

i.e.
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
guard = 4 ∧m ≥ 1 ∧ (m + 1/2)× 2e = |g1 + g2| ∧
m < 239

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ (guard mod 4)× 2 < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ 2×m + guard ÷ 4 < 240 ∧
((guard mod 4)× 2 = 0 ∨ 2×m + guard ÷ 4 ≥ 239) ∧
even.((guard mod 4)× 2) ∧
(guard mod 4)× 2 = 0 ∧ (2×m + guard ÷ 4)× 2e−1 = |g1 + g2|

)

15b. (P ∧ P5 ∧m < 239 ∧ guard = 7)
⇒
(P ∧ P6) [m/2×m + guard ÷ 4, e/e− 1, guard/(guard mod 4)× 2]

i.e.
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ guard < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
guard = 7 ∧m ≥ 238 + 237 ∧ (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e ∧
m < 239

)
⇒
(0 ≤ m1 < 240 ∧ 0 ≤ m2 < 240 ∧ 0 ≤ (guard mod 4)× 2 < 8 ∧
s = sign.(g1 + g2) ∧
0 ≤ 2×m + guard ÷ 4 < 240 ∧
((guard mod 4)× 2 = 0 ∨ 2×m + guard ÷ 4 ≥ 239)) ∧
even.((guard mod 4)× 2) ∧
(guard mod 4)× 2 = 6 ∧

(2×m + guard ÷ 4 + 1/2)× 2e−1 < |g1 + g2| < (2×m + guard ÷ 4 + 1)× 2e−1

)
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16. (P ∧ P5 ∧m ≥ 239)
⇒
(P ∧ P3)

i.e.
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m ≥ 238 + 237 ∧m× 2e < |g1 + g2| < (m + 1/4)× 2e

2 : m ≥ 238 ∧ (m + 1/4)× 2e = |g1 + g2|
3 : m ≥ 238 + 237 ∧ (m + 1/4)× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : m ≥ 1 ∧ (m + 1/2)× 2e = |g1 + g2|
5 : m ≥ 238 + 237 ∧ (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e

6 : m ≥ 238 ∧ (m + 3/4)× 2e = |g1 + g2|
7 : m ≥ 238 + 237 ∧ (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e

end case ∧
m ≥ 239

)
⇒
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
case guard of
0 : m× 2e = |g1 + g2|
1 : m× 2e < |g1 + g2| < (m + 1/4)× 2e

2 : (m + 1/4)× 2e = |g1 + g2|
3 : (m + 1/4)× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
5 : (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e

6 : (m + 3/4)× 2e = |g1 + g2|
7 : (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e

end case ∧
m < 240

)
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17. (P ∧ (P3 ∨ P6) ∧ guard ≥ 4 ∧m = 240 − 1)
⇒
(P ∧ P7) [m/239, e/e + 1)]

i.e.
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
(case guard of
0 : m× 2e = |g1 + g2|
1 : m× 2e < |g1 + g2| < (m + 1/4)× 2e

2 : (m + 1/4)× 2e = |g1 + g2|
3 : (m + 1/4)× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
5 : (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e

6 : (m + 3/4)× 2e = |g1 + g2|
7 : (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e

end case ∧
m < 240

∨
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(guard = 0 ∨m ≥ 239) ∧
even.guard ∧
case guard of
0 : m× 2e = |g1 + g2|
2 : m× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
6 : (m + 1/2)× 2e < |g1 + g2| < (m + 1)× 2e

end case
) ∧
guard ≥ 4 ∧
m = 240 − 1

)
⇒
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ 239 < 240 ∧
(239 ≥ 239 ∨ 239 × 2e+1 = |g1 + g2|) ∧
(239 − 1/2)× 2e+1 ≤ |g1 + g2| < (239 + 1/2)× 2e+1 ∧
(239 = 239 → (239 − 1/4)× 2e+1 ≤ |g1 + g2|)

)
{guard ≥ 4 implies (m + 1/2)× 2e ≤ |g1 + g2| < (m + 1)× 2e,

or, with m = 240 − 1, (240 − 1/2)× 2e ≤ |g1 + g2| < 240 × 2e}
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18. (P ∧ (P3 ∨ P6) ∧ guard ≥ 4 ∧m < 240 − 1)
⇒
(P ∧ P7) [m/m + 1]

i.e.
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
(case guard of
0 : m× 2e = |g1 + g2|
1 : m× 2e < |g1 + g2| < (m + 1/4)× 2e

2 : (m + 1/4)× 2e = |g1 + g2|
3 : (m + 1/4)× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
5 : (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e

6 : (m + 3/4)× 2e = |g1 + g2|
7 : (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e

end case ∧
m < 240

∨
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(guard = 0 ∨m ≥ 239) ∧
even.guard ∧
case guard of
0 : m× 2e = |g1 + g2|
2 : m× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
6 : (m + 1/2)× 2e < |g1 + g2| < (m + 1)× 2e

end case
) ∧
guard ≥ 4 ∧
m < 240 − 1

)
⇒
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m + 1 < 240 ∧
(m + 1 ≥ 239 ∨ (m + 1)× 2e = |g1 + g2|) ∧
(m + 1− 1/2)× 2e ≤ |g1 + g2| < (m + 1 + 1/2)× 2e ∧
(m + 1 = 239 → (m + 1− 1/4)× 2e ≤ |g1 + g2|)

)
{guard ≥ 4, hence m ≥ 239 ∧ (m + 1/2)× 2e ≤ |g1 + g2| < (m + 1)× 2e}
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19. (P ∧ (P3 ∨ P6) ∧ guard < 4)
⇒
(P ∧ P7)

i.e.
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 241 ∧
(guard = 0 ∨m ≥ 239) ∧
(case guard of
0 : m× 2e = |g1 + g2|
1 : m× 2e < |g1 + g2| < (m + 1/4)× 2e

2 : (m + 1/4)× 2e = |g1 + g2|
3 : (m + 1/4)× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
5 : (m + 1/2)× 2e < |g1 + g2| < (m + 3/4)× 2e

6 : (m + 3/4)× 2e = |g1 + g2|
7 : (m + 3/4)× 2e < |g1 + g2| < (m + 1)× 2e

end case ∧
m < 240

∨
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(guard = 0 ∨m ≥ 239) ∧
even.guard ∧
case guard of
0 : m× 2e = |g1 + g2|
2 : m× 2e < |g1 + g2| < (m + 1/2)× 2e

4 : (m + 1/2)× 2e = |g1 + g2|
6 : (m + 1/2)× 2e < |g1 + g2| < (m + 1)× 2e

end case
) ∧
guard < 4)

)
⇒
(P ∧
s = sign.(g1 + g2) ∧
0 ≤ m < 240 ∧
(m ≥ 239 ∨m× 2e = |g1 + g2|) ∧
(m− 1/2)× 2e ≤ |g1 + g2| < (m + 1/2)× 2e ∧
(m = 239 → (m− 1/4)× 2e ≤ |g1 + g2|)

)
{guard < 4 implies m× 2e ≤ |g1 + g2| < (m + 1/2)× 2e}
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Appendix B: the square–root test

In this appendix we present an ALGOL 60 program, originally written to test the square
root implementation in the ALGOL 60 system for the EL X8. It showed that implemen-
tation correct, but also demonstrated the instability of the hardware implementation of
the floating–point operations of the EL X8.

Here it is used to test the emulation of the floating–point hardware as described in this
report.

First some theory.

For non–zero floating–point number x its square root is approximated in the following
way. Write x as a× 22×b, with 1/4 ≤ a < 1. The

√
x =
√
a× 2b.

For
√
a use approximation x3 defined by:

x0 = .365681 + (5/8)× a
x1 = (a/x0 + x0)/2

x2 = (a/x1 + x1)/2

x3 = (a/x2 + x2)/2

(Defining the relative error εi in xi by setting xi =
√
a×(1+εi), we have εi+1 = εi

2/(1+εi).)

In order to compute the truncation error (halting at x3) we have to find the maximal
relative error in x0 in the interval [1/4, 1) The two boundary errors are: for a = 1/4:
(.365681 + 5/32 − 1/2) × 2 = .043862, and for a = 1: .365681 + 5/8 − 1 = −.009319.
The maximal relative interior error occurs where d

da
((.365681 + (5/8) × a)/

√
a − 1) = 0,

i.e. for a = (8/5)× .365681 = .58509, where (.365681 + (5/8)× a)/
√

(a)− 1 = −.043861.

This leads to a maximal relative error in x3 of 1.28 × 10−13. Since in the given interval
1/2 ≤

√
a < 1 or 239 ≤ 240 ×

√
a < 240, the maximal absolute error is 240 × 1.28× 10−13,

i.e. 0.141 bit.

To this we have to add the maximal rounding error. Since rounding errors in x0, x1,
and x2 are effectively removed in the next iteration step, only the rounding errors in the
computation of x3 do matter. The computation of a/x2 gives an error of at most 0.5
bit. In the sum of a/x2 and x2 (two numbers that are equal in the first 20 bits or so)
the error in a/x2 contributes only half, but we get an addition error of at most 0.5 bit.
The division by two leads to no further errors: the only effect is to decrement the binary
exponent by one. So we end with a maximal rounding error of 0.75 bit. Added to the
maximal truncation error this gives an maximal absolute error of 0.90 bit.

Consequently, if the square root of a number can be represented exactly by an X8 floating–
point number, the result is exact, since another result would differ at least 1 bit from the
exact result, which is more than the maximal error. Therefore, the square roots of all
the numbers of the form n2 with 1 ≤ n < 220 are exact. We used that fact in a test
program, originally meant to test the square root implementation, but later frequently
used as a test program for the floating–point hardware! The run time of the test was
some 13 minutes.

Here follows the program and its execution results.
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1 ’begin’ ’comment’ square root test;

2

3 ’integer’ i; ’real’ si;

4

5 ’for’ i:= 1 ’step’ 1 ’until’ 1 048 576 + 3 ’do’

6 ’begin’ si:= sqrt(i*i);

7 ’if’ si |= i

8 ’then’ ’begin’ ABSFIXT(7,0,i); FLOT(13,3,si); NLCR ’end’;

9 ’if’ i _: 100 000 * 100 000 = i

10 ’then’ ’begin’ ABSFIXT(7,0,i); PRINTTEXT(’(’passed’)’);

11 NLCR

12 ’end’

13 ’end’

14 ’end’

15

100000 passed

200000 passed

300000 passed

400000 passed

500000 passed

600000 passed

700000 passed

800000 passed

900000 passed

1000000 passed

1048577 +.1048577000002%+ 7

1048579 +.1048579000002%+ 7

execution data

number of instructions executed: 110 965 581

execution time (seconds): 772

average instruction time (microsec): 6.96

profile

linenumber count time %

5 18874540 99615538.75 12.9

6 52428950 410037156.25 53.1

7 6291474 27525208.75 3.6

8 3800 22787.50 0.0

9 33354412 234689332.50 30.4

10 9339 49433.75 0.0

11 380 1637.50 0.0
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