Shape-engineered epitaxial InGaAs quantum rods for laser applications

Citation for published version (APA):

DOI:
10.1063/1.2903098

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 27. Mar. 2019
Shape-engineered epitaxial InGaAs quantum rods for laser applications

L. H. Li, P. Ridha, G. Patriarche, N. Chauvin, and A. Fiore

Ecole Polytechnique Fédérale de Lausanne, Institute of Photonics and Quantum Electronics, Station 3, CH-1015 Lausanne, Switzerland
LPN/CNRS, Route de Nozay, 91460 Marcoussis, France

(Received 7 November 2007; accepted 4 March 2008; published online 24 March 2008)

We apply artificial shape engineering of epitaxial semiconductor nanostructures to demonstrate InGaAs quantum rods (QRs), nanocandles, and quantum dots-in-rods on a GaAs substrate. The evolution of the QRs from a zero-dimensional to one-dimensional confinement is evidenced by systematically measuring the photoluminescence and photoluminescence decay as a function of the rod length. Lasers based on a three-stack QR active region are demonstrated at room temperature, validating the applicability of the QRs in the real devices.

Due to unique quantum confinement properties, both zero-dimensional (0D) quantum dots (QDs) and one-dimensional (1D) quantum wires have been extensively studied and utilized in electronic and optoelectronic devices. An interesting intermediate situation between 0D and 1D confinement is represented by elongated QDs, i.e., quantum rods (QRs). For the fundamental investigations, QRs can be used to investigate how the electronic structure evolves from a 0D to a 1D quantum system. From the application perspective, QRs may have potential advantages over QDs such as enabling the control of the polarization. However, until recently, the difficulties in fabricating QRs have limited both fundamental investigations and applications to real devices. Chemical synthesis by vapor-liquid-solid and solution-liquid-solid mechanisms has been used, but colloidal QRs prepared by this approach are sensitive to surface traps. Recently, the growth of columnar QDs embedded in a GaAs matrix by molecular beam epitaxy (MBE) has been explored. In this approach, the columnar QDs are formed by first growing a layer of seed QDs in the standard Stranski–Krastanow (SK) mode, and then depositing a short period GaAs/InAs superlattice (SL) on the GaAs substrate. The in-plane strain distribution created by the first QD layer favors the In incorporation on top of QDs, resulting in an In-rich column-shaped nanostructure. The height of these nanostructures can be independently controlled by changing the number of SL periods; indeed, the growth of columnar QDs with aspect ratio >1 was recently demonstrated, suggesting the potential to fabricate QRs. The QRs produced by this approach can be free from surface traps and are structurally compatible with the conventional GaAs/AlGaAs waveguide structure. In this paper, we (a) demonstrate the possibility of engineering the shape and composition of columnar QDs to obtain QRs with tunable aspect ratio and compositionally modulated QRs, (b) investigate the transition from 0D- to 1D-like optical properties as a function of rod length, and (c) show the applicability of such QRs to laser devices by demonstrating room-temperature lasing operation based on a QR active region.

The samples were grown by using MBE on the (001)-oriented GaAs substrate. The QRs were formed by depositing a 1.8 ML InAs QD seed layer and a short period GaAs (3 ML)/InAs (0.62 ML) SL. Growth detail and optimization of the QRs were reported elsewhere.

Transmission electron microscopy (TEM) measurements on the QR samples containing SL with different number of periods (N) of 3, 16, and 35 were performed. Figure 1(a) shows the g=(002) dark field cross-sectional TEM images of these samples, which demonstrate the evolution of the QR formation. Indium composition profiles across the center of the QRs are also presented. The structure of these samples consists of two parts, i.e., the vertical rods and a two-dimensional (2D) layer around them. The 2D layer consists of mobile InAs quantum wires (QWs) and InAs quantum dots (QDs) in a homoepitaxial matrix. The In composition profile is found to be uniform across the QRs, indicating the absence of surface traps and the control of the In composition within the QRs. The In composition profile is uniform across the QRs, indicating the absence of surface traps and the control of the In composition within the QRs. The In composition profile is uniform across the QRs, indicating the absence of surface traps and the control of the In composition within the QRs.
of an InGaAs quantum well with a uniform In composition of 16%. The In composition across the center of the QRs is not perfectly uniform, a vertical composition fluctuation of about 10% with an average value about 35% is observed. The in-plane diameter of the rods is about 10 nm, which is set by the diameter of the seed QD layer and can be controlled by varying the growth parameters. The rod height can be tuned by varying the number of SL periods. The height of the rods with \(N=3, 16,\) and 35 is 5, 28, and 41 nm, corresponding to aspect ratios of 0.5, 2.8, and 4.1, respectively. The aspect ratio of 4.1 is extremely large and it is impossible to achieve for the conventional SK growth of QDs. No dislocation and plastic relaxation were observed even for the QR sample with \(N=35,\) as shown in Fig. 1(b), indicating an excellent material quality.

A unique feature of these epitaxial QRs is that the vertical profile of the In composition, and thus, of the band gap and of the strain, can be easily controlled by changing the growth conditions during the rod growth. An illustrative example of this engineering freedom is the candlelike nanostructure (nanocandle) shown in Fig. 2(a). In this case, the GaAs (3 ML)/InAs (0.62 ML) SL was replaced by a chirped GaAs (3 ML)/InAs (\(x\) ML) SL, where the InAs thickness \(x\) was gradually decreased from 0.72 to 0.56 ML at fixed steps. The In composition across the center of the rod smoothly decreases from the bottom to the top, and at the same time, the rod diameter decreases, leading to a tapered, candle like profile. As a further step, we designed and fabricated a QD-in-a-rod structure by increasing the InAs layer thickness along the growth direction, allowing, for example, the controlled formation of coupled QDs and tunnel-injection barriers, the control of potential gradients within the rod, etc.

To confirm the 1D characteristics of the QRs, their optical properties and the carrier relaxation dynamics were investigated by microphotoluminescence (micro-PL) and time-resolved PL measurements at 10 K. Figure 3 shows the normalized low-temperature (10 K) PL spectra of the QR samples with \(N=3, 16,\) and 35. A well-developed single PL peak was observed in each spectrum, indicating that the size of the QRs is very uniform. With increasing rod length, the PL peak energy redshifts (inset of Fig. 3). This indicates the delocalization of the wave functions along the QR length. Figure 4 presents the typical PL decay curves of the samples with \(N=3, 16,\) and 35. For the sample with \(N=3,\) the curve can be essentially characterized by a monoexponential decay with a time constant (TC) of 0.85 ns, which is very similar to that of the conventional SK growth of QDs. In contrast, for \(N>10,\) (see e.g., \(N=16\) and 35 in Fig. 4), the PL decays are characterized by a biexponential dynamics, which consists of a fast TC of 1–2 ns and a slow TC of about 10 ns. This type of biexponential decay phenomenon is often observed in QD and quantum wire structures, and attributed to the existence of nonradiative (dark) states with much longer decay time. In the present QR structure, dark states may originate from hole states strongly localized in a subsection of the rod, thus, having a small overlap with the ground electronic wave function. The fast TC increases with increasing rod length.
According to the simple picture of increasing oscillator strength with increasing exciton volume,13 the opposite trend would be expected. However, due to the significant difference in the electron and hole effective masses of the In\textsubscript{0.35}Ga\textsubscript{0.65}As QR, the electron wave function is still delocalized but the hole wave function is more easily confined in a section of the rod.2,4,14 As the rod length increases, the overlap between these two wave functions decreases, resulting in a lower transition probability, and thus, a longer lifetime.

To validate the applicability of the QRs in the real devices, a laser device structure based on a three-stack QR active region was grown. The QR length is 36 nm, corresponding to an aspect ratio of 3.6. Figure 5 shows the output power versus drive current (L-I) characteristic for a 3 mm \times 10 μm laser at 20 °C. The lasers were measured as cleaved and unmounted, under pulsed operation. The laser presents a threshold current density of 650 A/cm2. A clear lasing peak is observed at 1130 nm, as shown in the inset.

In conclusion, we demonstrated the feasibility of artificial shape engineering QDs. Controlled nanostructures including InGaAs QRs, nanocandles, and QDs-in-QRs were grown by MBE. The transition characteristic of the QRs from 0D to 1D confinement type was evidenced by evaluating the evolution of the exciton energy and oscillator strength of the QRs as a function of the rod length. At room temperature, laser diodes based on a QR active region were demonstrated, validating the applicability of the QRs in the real devices.

We acknowledge financial support from the OFES (COST program), EU-FP6 project ZODIAC (Contract No. FP6/017140), and the Swiss National Science Foundation. We would like to thank Q. Zhu (EPFL) and P. Voisin (LPN-CNRS) for helpful discussions.