The Fourier modal method for aperiodic structures

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Apr. 2019
The Fourier modal method for aperiodic structures

by

M. Pisarenco, J.M.L. Maubach,
I. Setija, R.M.M. Mattheij
The Fourier modal method for aperiodic structures

M. Pisarenco¹, J.M.L. Maubach¹, I. Setija², R.M.M. Mattheij¹

¹Eindhoven University of Technology, Department of Mathematics and Computer Science, Den Dolech 2, 5600MB Eindhoven, The Netherlands
²ASML Netherlands B.V., Department of Research, De Run 6501, 5504DR Veldhoven, The Netherlands
email: m.pisarenco@tue.nl

Summary
This paper extends the area of application of the Fourier modal method from periodic structures to non-periodic ones illuminated under arbitrary angles. This is achieved by placing perfectly matched layers at the lateral boundaries and reformulating the problem in terms of a contrast field.

Introduction

The Fourier modal method (FMM), also referred to as Rigorous Coupled-Wave Analysis (RCWA), has quite a long history in the field of rigorous diffraction modeling. It was first proposed by Moharam and Gaylord in 1981 [3]. Being based on Fourier-mode expansions, the method is inherently built for periodic structures such as diffraction gratings.

From periodic to isolated structures

Lalanne and his co-workers [4], [2] have applied the FMM to waveguide problems. The aperiodicity of the waveguide was dealt with by placing perfectly matched layers (PMLs) [1] on the margins of the computational cell (domain). PMLs can be seen as some fictitious absorbing and non-reflecting materials. In this way, artificial periodization is achieved, i.e. the structure of interest is repeated in space, but there is no electromagnetic coupling between neighboring cells.

The above approach, combining standard FMM with PMLs, is applicable only for the case of normal incidence of the incoming field, which is sufficient for waveguide problems. In this paper we show that for oblique incidence we need to reformulate the standard FMM such that the incident field is not part of the computed solution. We propose a decomposition of the total field into a background field (containing the incident field) and a contrast field. The problem is reformulated with the contrast field as the new unknown. The background field solves a corresponding background problem which has a simple analytical solution. The main effect of the reformulation is that the homogeneous system of second-order ODEs becomes non-homogeneous. The solution of this equation is derived in closed form, as required for the FMM algorithm.

Numerical example

We consider the problem of scattering from an isolated resist line in air with a width of 1 unit and a height of 0.2 units illuminated by a plane wave with a wavelength $\lambda = 2\pi$ units at normal and oblique incidence. The computational domain has a width $\Lambda = 5$ units and the lateral PMLs have a width of 1 unit. The geometry of the problem can be
seen in the top part of Figure 1. Note that the problem may be scaled in space and any fixed distance may be chosen as a unit. The permittivities of air and resist are given by $n_0 = 1, n_2 = 1.5$. For conciseness, the reformulated FMM with PMLs will be referred to as aFMM-CFF (aperiodic Fourier modal method in contrast-field formulation).

Figure 1 shows the total field computed with aFMM-CFF for oblique incidence, $\theta = \pi/6$. Solutions computed with supercell FMM (standard FMM with a large period Λ) are used as a reference. Clearly, in the limiting case $\Lambda \rightarrow \infty$, the solution of the periodic problem tends to the solution computed with aFMM-CFF. This enables us to draw two important conclusions: (1) the PML implementation is correct - it acts as a reflectionless absorbing layer, and (2) the amount of harmonics required to obtain a ‘good’ solution is much lower for aFMM-CFF than for supercell FMM.

In our example the aFMM-CFF requires 10 times less harmonics than the supercell FMM (20 instead of 200). In the view of the fact that the number of operations performed by the eigenvalue solver (which is the most demanding step in the method) scales cubically with the amount of harmonics, this results in a factor of 10^3 difference in terms of computational time.
References

PREVIOUS PUBLICATIONS IN THIS SERIES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-17</td>
<td>I.M. Machyshyn, P.H.M. Bovendeerd, A.A.F. van de Ven, P.M.J. Rongen, F.N. van de Vosse</td>
<td>Stability against dynamic remodeling of an arterial tissue</td>
<td>March ‘10</td>
</tr>
<tr>
<td>10-18</td>
<td>I.M. Machyshyn, P.H.M. Bovendeerd, A.A.F. van de Ven, P.M.J. Rongen, F.N. van de Vosse</td>
<td>A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth</td>
<td>March ‘10</td>
</tr>
<tr>
<td>10-19</td>
<td>T.L. van Noorden, A. Muntean</td>
<td>Homogenization of a locally-periodic medium with areas of low and high diffusivity</td>
<td>March ‘10</td>
</tr>
<tr>
<td>10-20</td>
<td>V. Prčkovska, P.R. Rodrigues, R. Duits, B.M. ter Haar Romeny, A. Vilanova</td>
<td>Extrapolating fiber crossings from DTI data. Can we gain the same information as HARDI?</td>
<td>March ‘10</td>
</tr>
<tr>
<td>10-21</td>
<td>M. Pisarenco, J.M.L. Maubach, I. Setija, R.M.M. Mattheij</td>
<td>The Fourier modal method for aperiodic structures</td>
<td>March ‘10</td>
</tr>
</tbody>
</table>