Time-domain analog wavelet transform in real-time

Moreira-Tamayo, O.; Pineda de Gyvez, J.

Published in:

DOI:
10.1109/ISCAS.1995.523724

Published: 01/01/1995

Citation for published version (APA):
Time-Domain Analog Wavelet Transform
In Real-Time
Oscar Moreira-Tamayo and José Pineda de Gyvez
Dept. of Electrical Engineering
Texas A&M University
College Station, TX 77843-3128
Tel: (409) 845-7160 Fax: (409) 845-7161
email: moreira@eesunl.tamu.edu

ABSTRACT
This paper presents a time-domain approach for the implementation and continuous generation of wavelet transform coefficients. The wavelet generation relies on amplitude modulation techniques. This approach offers two extra degrees of freedom through the appropriate use of the modulation index and the selected envelope signal. The added flexibility opens the possibility to create new families of wavelets which are specially suitable for analog implementations. The theoretical fundamentals for the generation of wavelets using the amplitude modulation scheme are presented. Simulated and experimental results for our hardware prototype are presented.

I. INTRODUCTION
Limitations in the Short Time Fourier Transform has motivated the development of the Wavelet Transform (Wₜ), where Wₜ generalizes the kernel of the Fourier Transform. This kernel allow us to have flexible time windows and other oscillatory signals in order to have different resolutions in the time and frequency axis. Different types of basic wavelets (also called mother wavelet) have been proposed [1].

Hardware implementations of wavelets have been scarcely explored; they are mostly based on frequency-domain approaches [2,3,4]. The time domain implementation of the wavelet transform involves the design of wavelet generators, multipliers, and integrators in order to perform the convolution of the signal with the wavelet. Some wavelets are especially suitable for time domain analog implementations, among them are the Meyer wavelets, Spline wavelets, and Gabor wavelets [5]. Other types of wavelets are those based on the window functions for discrete Fourier transform [6] (see Table 1). It will be shown in this paper that these wavelets have the advantage of requiring small hardware for their implementation.

Table 1. Window functions for STFT.

<table>
<thead>
<tr>
<th>Window Type</th>
<th>Function</th>
</tr>
</thead>
</table>
| Barlett (triangular) | \[
\begin{align*}
2t/M, & \quad 0 \leq t \leq M/2, \\
2 - 2t/M, & \quad M/2 \leq t \leq M, \\
0, & \quad \text{otherwise}
\end{align*}
\] |
| Hanning | \[
\begin{align*}
0.5 - 0.5 \cos(2\pi t/M), & \quad 0 \leq t \leq M, \\
0, & \quad \text{otherwise}
\end{align*}
\] |
| Hamming | \[
\begin{align*}
0.54 - 0.46 \cos(2\pi t/M), & \quad 0 \leq t \leq M, \\
0, & \quad \text{otherwise}
\end{align*}
\] |
| Blackman | \[
\begin{align*}
0.42 - 0.5 \cos(2\pi t/M), & \quad 0 \leq t \leq M, \\
+ 0.08 \cos(4\pi t/M), & \quad 0 \leq t \leq M, \\
0, & \quad \text{otherwise}
\end{align*}
\] |

II. WAVELET TRANSFORM COMPUTATION USING AMPLITUDE MODULATED SIGNALS
The wavelet transform is defined as [4]:

\[
(W_p f)(b, a) := \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi^* \left(\frac{t - b}{a} \right) dt
\]

(1)

where \(\psi \) is called a "basic wavelet" (also called mother wavelet), \(\psi^* \) is its complex conjugate and \(a \) is the scaling constant.

Many practical applications involving spectral analysis, require the analysis of the signal in a time interval. Wavelet transforms of the signal can be computed repeatedly using some scaled and shifted version of the basic wavelet. In order to perform these operations a wavelet chain is proposed. A wavelet chain consists of a sequence of wavelets generated consecutively one after another. Fig. 1 shows a chain of Spline [5] wavelets. Each wavelet in the chain can be maintained equal or be adjusted to a specific size depending on the application. For instance, in Fig. 1 the wavelets are being successively scaled.

Chains of sinusoidal wavelets can easily be generated by modulating a sinusoidal signal with a lower frequency sinusoidal signal, i.e.,
\[
\psi_s(t) = \begin{cases}
A_s e^{-j\omega_c t}[1 + m \cos(\omega_c t)], & \text{for } -\pi < \omega_c t < \pi, \\
0, & \omega_c t > \omega_c
\end{cases}
\tag{2}
\]

where \(A_s\) is a reference magnitude of the wavelet, \(2\pi/\omega_c\) is the time window size, \(\omega_c\) is the frequency being analyzed and \(m\) is the modulation index. It can be seen from the limits imposed by eq. 2, that the wavelet has a finite support. This wavelet is suitable for time domain analog implementations since it is formed by sinusoidal signals which can be generated with simple circuits. Moreover, the envelope signal can be changed to a triangular signal (Barlett window [6]) which also can be easily implemented by integrating square signals.

The modulation index adds an extra degree of freedom as different time windows can be computed using the same expression by varying only \(m\). For example, if the modulating index \(m\) is 1 or \(23/27\) we have wavelets based on the Hanning window or Hamming window respectively (see Table 1).

III. IMPLEMENTATION PROCEDURE

A wavelet function is generated by multiplying two periodic functions, that give origin to a modulated “analyzing” signal. The wavelet is then multiplied by the signal to be analyzed, \(f(t)\), and integrated. The final result is a convolution of the signals. The integration to be performed in hardware is:

\[
(W_s f)(a, b) = \int_{l_1}^{l_2} f(t) \left[g\left(\frac{t-b}{a}\right) - g\left(\frac{t-b}{a}\right)\right] dt \tag{3}
\]

where \(g(t)\) is the analyzing signal and \(v(t)\) is a periodic window signal used as envelope in the modulation process. The limits \(l_1\) and \(l_2\) are selected to have the same limits that the time window establishes.

For the sinusoidal wavelet (see eq. 3), we have that the analyzing function \(g(t)\) specifies a complex sinusoidal consisting of two orthogonal functions expressed as follows

\[
g(t) = e^{-j\omega_c t} = \cos(\omega_c t) + j \sin(\omega_c t) \tag{4}
\]

Hence, the wavelet transform can be separated in a real part and a imaginary part as follows

\[
(W_s f)(a, b) = \int_{l_1}^{l_2} f(t) \cos(\omega_c t) \frac{1}{2}[1 + m \cos(\omega_c t)] dt \\
+ \int_{l_1}^{l_2} f(t) \sin(\omega_c t) \frac{1}{2}[1 + m \cos(\omega_c t)] dt
\]

The limits of integration, \(l_1\) and \(l_2\), are taken from the envelope function for any two zero consecutive points. This case occurs when the cosine function reaches a minimum, e.g., \(v(t) = 0\) if \(m = 0\). The integration process is carried out independently for each wavelet in the chain of wavelets, and the wavelet coefficient is obtained just before the resetting occurs.

IV. HARDWARE IMPLEMENTATION

Fig. 2 shows the block diagram for the system implementation. In order to generate orthogonal signals (90° phase shift) with integer multiple frequencies, the signals are generated using a pulse signal (master clock) as the time reference. The master clock, is divided using two different flip-flops, one of them triggered by the positive edge and the other by the negative edge. These two signals are filtered to pass only the fundamental signal, producing two orthogonal sinusoidal. The envelope can also be generated by dividing the master clock and filtering it afterwards, specially when short wavelets are required. The next step is to add a DC component according to the modulation index desired to compose the windowing signal. The modulation index is equal to the magnitude of the sinusoidal divided by the DC component. Then the two sinusoidal are multiplied by the envelope. For our prototype we used the analog multiplier MC1494. At this point the chain of wavelets similar to those in Fig. 1 has been generated. Notice that by changing the frequency of the master clock the shape of the wavelet is scaled proportionally, but if this happens the amplitude of the wavelet \(A_s\) and the filters’ cut off frequency need to be readjusted in order to have a scaled version of the same wavelet.

The wavelet signals are then applied to a convolution section. The wavelets are multiplied by the signal to be analyzed using analog multipliers an then integrated. In this case two MC1494 were used for this purpose.

For the integration section the circuit shown in Fig. 2 was used. The integrating elements are the OTA and the capacitor \(C_t\). The OTA was chosen because it has the advantage of being electronically programmable, i.e., its transconductance is a function of the current \(I_c\). If the wavelet is scaled, a different integration constant may
be wanted. The integrator is resetted right after the end of each wavelet. Using a pulse ϕ_1 the transistor M_4 resets the capacitor C_1. Many applications require interfacing the circuit with a digital system, therefore, a sample and hold circuit is needed. The buffer, transistor M_2 and C_2 perform this function. The pulses that reset the capacitors (ϕ_1 and ϕ_2) are two pulses, their duration must be sufficient to fully discharge the capacitors. The pulse ϕ_1 is used to trigger ϕ_1, i.e., the output is sampled first, and then the integrator is resetted. The pulse ϕ_2 is triggered by a timed signal produced by a comparator circuit. A delayed version of the envelope signal is compared with a threshold voltage producing a square wave. The threshold for the comparator is adjusted to produce a positive flank just before the wavelet ends. This flank triggers an astable multivibrator that produces ϕ_2, i.e., the sampling pulse.

V. SIMULATION RESULTS

The first part of the simulation consists of illustrating the response of the system to different input signals. Fig. 3 shows the response of the system to three sinusoidal signals. Fig. 3.a shows the sinusoidal wavelet used, it has a duration of 5 ms and an analyzing frequency of 2 KHz. Fig. 3.b shows the input signals of frequencies 2.0, 2.05 and 2.1 KHz. Fig. 3.c shows the output voltage of the circuit at capacitor C_1 of the real part. That is, the result of the integration. The final value, i.e., before it is resetted, corresponds to the real part of the wavelet coefficient. Notice that the integration curve 1 reaches 1 V before it is resetted. That is because the input sine wave is in phase with the real part of the wavelet coefficient. As the input signal frequency departs from 2.0 KHz the output becomes smaller reaching zero at 2.1 KHz. In this last case the output is imaginary and its magnitude is 0.92 V. (not shown).

For the time delay of the system one has to consider that a discrete wavelet transform is being computed (not discrete-time wavelet transform) since a coefficient is obtained only at the end of the integration period. Therefore, to compute the time response characteristic, a set of delayed wavelets were generated. Using the same wavelet length of 5 ms, a coefficient is obtained at the end of this period. Therefore the maximum delay is also 5 ms. To have the time-response plot with 100 points we generated 100 wavelets, each one was delayed 0.5 ms with respect to the previous one. The wavelet coefficients were obtained for a sinusoidal signal with a starting point t_0, i.e., this signal is zero before the starting point, the purpose is to find the experimental delay of the system. The result of this computation will indicate how long after this point the system is able to capture the sine signal. Fig. 4 shows the results. Notice that the signal has reached its maximum after 4 ms. This can be considered the practical delay of the circuit.
VI. EXPERIMENTAL RESULTS

The test consisted in applying different signals to find their wavelet coefficients. The wavelet used for this case-study has an analyzing frequency $\omega_c = 3700$ Hz, and the envelope has a frequency is 1/16 of the inner frequency, i.e., $\omega_p = 3700 \text{Hz} / 16 = 231.25 \text{Hz}$ (The analyzing frequency is an integer multiple of the envelope). Fig. 5 shows the results of analyzing a pure sinusoidal signal at the exact same frequency (3700 Hz) of the wavelet but with $+90^\circ$ phase shift with respect to the real part. Figures 5.a and 6.a show the product of the wavelet and the input signal. Figures 5.b and 6.b show the results of the integration. As expected, the result of integrating the signal in Fig. 5.a is zero, and the result of integrating Fig. 6.a is -0.72 V which corresponds to the imaginary part of the wavelet coefficient. Since the real part is zero, the magnitude of this wavelet coefficient is 0.72 V and the phase is $\pi/2$.

![Fig. 4. Time response of the sinusoidal transform.](image)

Fig. 4. Time response of the sinusoidal transform.

![Fig. 5. Real part of WT. (a) Multiplication of the wavelet and the input signal. (b) WT Coefficient.](image)

Fig. 5. Real part of WT. (a) Multiplication of the wavelet and the input signal. (b) WT Coefficient.

![Fig. 6. Imaginary part of WT (a) Multiplication of the wavelet and the input signal. (b) WT Coefficient.](image)

Fig. 6. Imaginary part of WT (a) Multiplication of the wavelet and the input signal. (b) WT Coefficient.

VII. CONCLUSION

A systematic approach to generate wavelets in time domain was developed. Starting from this approach, a new family of wavelets, namely Amplitude Modulated Wavelets, was developed. A wavelet transform circuit was implemented in hardware. The results were suitable for those applications that require fast computation of wavelet coefficients. By using a bank of these circuits a spectral decomposition can be achieved with small computation time.

REFERENCES

