Influence of the deposition temperature on the c-Si Surface passivation by Al₂ O₃ films synthesized by ALD and PECVD

Citation for published version (APA):
Dingemans, G., Sanden, van de, M. C. M., & Kessels, W. M. M. (2010). Influence of the deposition temperature on the c-Si Surface passivation by Al₂ O₃ films synthesized by ALD and PECVD. Electrochemical and Solid-State Letters, 13(3), H76-H79. DOI: 10.1149/1.3276040

DOI:
10.1149/1.3276040

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Apr. 2019
Influence of the Deposition Temperature on the c-Si Surface Passivation by Al2O3 Films Synthesized by ALD and PECVD

G. Dingemans,* M. C. M. van de Sanden, and W. M. M. Kessels

Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

The material properties and c-Si surface passivation have been investigated for Al2O3 films deposited using thermal and plasma atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD) for temperatures (Tdep) between 25 and 400°C. Optimal surface passivation by ALD Al2O3 was achieved at Tdep = 150–250°C with S

 dep < 3 cm/s for ~2 Ω cm p-type c-Si. PECVD Al2O3 provided a comparable high level of passivation for Tdep = 150–300°C and contained a high fixed negative charge density of ~6 × 10^{12} cm^{-2}. Outstanding surface passivation performance was therefore obtained for thermal ALD, plasma ALD, and PECVD for a relatively wide range of Al2O3 material properties. © 2009 The Electrochemical Society. [DOI: 10.1149/1.3276040] All rights reserved.

Manuscript submitted November 10, 2009; revised manuscript received November 30, 2009. Published December 29, 2009.

ALD recently emerged as an effective material for the passivation of crystalline silicon (c-Si) surfaces, enabling ultralow surface recombination velocities (S

 eff) on p-, n-, and p'-type c-Si, leading to enhanced solar cell efficiencies. A combination of chemical passivation (i.e., the reduction of interface defects) and field-effect passivation (i.e., electrostatic shielding of minority charge carriers) provided by a large amount of fixed negative charges located at the c-Si/Al2O3 interface is key to the high level of surface passivation achieved. To date, the Al2O3 surface passivation films were mostly synthesized by plasma and thermal atomic layer deposition (ALD) at a substrate temperature of ~200°C. Very recently, it has been shown that other techniques, such as sputtering and plasma-enhanced chemical vapor deposition (PECVD), can also be used to deposit Al2O3 surface passivation films. These alternative deposition techniques allow for higher growth rates but generally do not surpass ALD in terms of material and surface passivation quality.

In this article, the influence of the substrate temperature (Tdep) during deposition on the Al2O3 material properties and the surface passivation performance is addressed for Al2O3 films deposited at temperatures in the range of Tdep = 25–400°C for thermal and plasma ALD and PECVD. We report that PECVD can be used to deposit Al2O3 films that provide a similar level of surface passivation as ALD Al2O3 while enabling higher deposition rates. By corona charging experiments, the presence of a high fixed negative charge density in the PECVD Al2O3 films is demonstrated.

Experimental

A direct comparison between thermal ALD and plasma ALD was enabled by employing both methods in an Oxford Instruments OpAL ALD reactor (operating pressure ~170 mTorr) and in a second reactor, the Oxford Instruments FlexAL (operating pressure ~15 mTorr). For both ALD methods, trimethylaluminum [Al(CH3)3] was used as the Al precursor in the first half cycle of the ALD process. During the second half cycle, either H2O or an O2 plasma was used for thermal and plasma ALD, respectively. Cycle and purge times were optimized to reach a truly self-limiting ALD process at every T

 dep. The PECVD process employed a continuous remote O2/Ar plasma and Al(CH3)3 as the Al precursor. Unlike ALD, the deposition rate for PECVD scaled with the Al(CH3)3 flow that was introduced into the reactor. The refractive index (at a photon energy of 2 eV) and growth rate were determined by in situ spectroscopic ellipsometry, the atomic Al and O densities were determined by Rutherford backscattering spectroscopy, and the atomic hydrogen density was determined by elastic recoil detection. To evaluate the level of surface passivation, low resistivity p- and n-type ~275 μm thick float zone (100) c-Si wafers were coated on both sides with Al2O3 with a thickness of ~30 nm. Before deposition, the wafers were treated with diluted HF (1% in deionized H2O). The surface passivation was evaluated in the as-deposited state and after a 10 min postdeposition anneal at 400°C in a N2 environment. The upper limit of the surface recombination velocity (S

 eff,max) was determined from the effective lifetime (τ

 eff), as measured with photoconductance (Sinton WCT 100) at an injection level of 10^{15} cm^{-3} by assuming an infinite bulk lifetime.

Results and Discussion

The results regarding the substrate temperature variation are shown in Fig. 1-3. The growth rate, refractive index, and surface passivation performance were evaluated for plasma and thermal ALD in Fig. 1 and for PECVD in Fig. 2. The mass density, atomic O/Al ratio, and hydrogen concentration for corresponding Al2O3 films are displayed in Fig. 3.

The results for the growth-per-cycle (GPC) as a function of Tdep for plasma and thermal ALD (Fig. 1a) agree well for the OpAL and the FlexAL reactors. The higher GPC for plasma ALD compared to thermal ALD, which is observed over the full temperature range but particularly pronounced at low temperatures, has been ascribed to a more efficient surface oxidation by plasma-generated O radicals compared to thermally activated oxidation by H2O. The decrease in GPC with increasing Tdep can be mainly attributed to a decreasing density of OH surface groups due to dehydroxylation reactions.

The refractive index (Fig. 1b) increases with deposition temperature, which is directly linked to material densification, as displayed in Fig. 3a. The mass density of the films increased with Tdep saturating at 3.2 ± 0.2 g/cm3 at a high temperature.

In Fig. 2a and b, the deposition rate and refractive index as a function of substrate temperature are shown for the PECVD process. The values were measured at a fixed location on the various wafers, as a variation in thickness, and refractive index was observed for the PECVD samples due to the nonuniformity of the film caused by the deposition technique. The refractive index and mass density (Fig. 3a) increased with Tdep similar to the ALD case. The refractive index values for PECVD Al2O3 are lower than the ones obtained for ALD at the same Tdep. The deposition rate, R

 dep, decreased strongly with increasing Tdep saturating at ~5 nm/min for Tdep > 200°C. The higher Rdep at low temperature can be partly attributed to a lower mass density linked to a higher density of hydrogen (mainly incorporated as OH groups) and carbon-related impurities in the films, as revealed by IR absorption analyses. Furthermore, the general trend of Rdep as a function of Tdep is an indication of a growth process controlled by the adsorption of surface species, as also pre-
viously reported for the PECVD of SiO$_2$. Dehydroxylation reactions could also play a role, but a more in-depth research is necessary to further elucidate the growth mechanism.

For all three deposition methods, the material densification with increasing T_{dep} can be partly explained by the decreasing hydrogen concentration as evidenced by Fig. 3c. For the same T_{dep}, the hydrogen concentrations of the PECVD Al$_2$O$_3$ films were significantly higher than those for the ALD Al$_2$O$_3$ films. The O/Al ratio decreased with increasing T_{dep} as displayed in Fig. 2b, and (nearly) stoichiometric Al$_2$O$_3$ films, with O/Al ratios close to 1.5, were obtained at $T_{dep} > 200^\circ$C.

The level of c-Si surface passivation by ALD-synthesized Al$_2$O$_3$ is evaluated in Fig. 1c. The results demonstrate that thermal ALD Al$_2$O$_3$ provides a higher level of surface passivation in the as-deposited state (with lowest $S_{eff} < 35$ cm/s) than plasma ALD Al$_2$O$_3$. It is observed that the as-deposited passivation quality increased with T_{dep} for the plasma ALD, whereas a small decrease with increasing T_{dep} is observed for the thermal ALD. After annealing, the surface passivation quality improved significantly, with the best passivation performance obtained at $T_{dep} = 150–250^\circ$C for both ALD methods. Values of $S_{eff,max}$ down to ~ 3 cm/s are reached for ~ 2 cm p-type c-Si by both plasma and thermal ALD.

The trend observed for the passivation quality of the as-deposited PECVD Al$_2$O$_3$, shown in Fig. 2c, is similar to the one for plasma ALD Al$_2$O$_3$. Annealing also improved the passivation properties of the PECVD Al$_2$O$_3$ films. The annealed films afforded a high level of surface passivation with $S_{eff} < 10$ cm/s for $T_{dep} = 150–300^\circ$C. In addition to the data shown in Fig. 2c, exceptionally low S_{eff} values were obtained at $T_{dep} = 200^\circ$C, for example, $S_{eff} < 2.9$ cm/s.

$S_{eff,max} = 4.7$ ms and $S_{eff} < 0.8$ cm/s ($\tau_{eff} = 18$ ms) on 2.2 cm p-type and 3.5 cm n-type c-Si, respectively; and also $S_{eff} < 14$ cm/s ($\tau_{eff} = 1$ ms) on 1 cm p-type c-Si. The corresponding injection-level-dependent lifetime curves are displayed in Fig. 4. These results were obtained with a deposition rate of ~ 5 nm/min. Significantly higher deposition rates of > 30 nm/min were also feasible while maintaining a good level of surface passivation, as demonstrated by $S_{eff} < 14$ cm/s on 3.5 cm n-type c-Si. For comparison, under the present conditions the maximum deposition rate for ALD was ~ 1.8 nm/min at $T_{dep} = 200^\circ$C.

The improvement of the passivation properties of the as-deposited plasma ALD and PECVD Al$_2$O$_3$ films with increasing T_{dep} can be explained by an in situ anneal effect at high temperatures. The interfacial oxide (SiO$_x$) that forms between c-Si and Al$_2$O$_3$ is thought to play an essential role in the surface passivation properties of Al$_2$O$_3$. The interface quality and related surface passivation properties improve during plasma ALD and PECVD at high temperatures, which is similar to the effect observed during the post-deposition anneal. For thermal ALD, an in situ anneal effect was not observed, and $S_{eff,max}$ on the as-deposited films even slightly increased with increasing T_{dep}. Apparently, lower temperatures led to improved interface properties for Al$_2$O$_3$ deposited by thermal ALD.

The Al$_2$O$_3$ material properties are expected to affect both the chemical and field-effect contributions to the surface passivation performance of the films. The fixed negative charge density, Q_f, that increases drastically during annealing, induces the field-effect passivation and is expected to be closely related to the Al$_2$O$_3$ structural properties near the interface.

As shown in Fig. 5, we have also verified the presence of a high negative Q_f of (6.5 ± 1)
Figure 3. (Color online) (a) Mass density, \(\rho_{\text{max}} \), (b) O/Al ratio, and (c) the H concentration, [H], determined as a function of substrate temperature for as-deposited films. Data are given for plasma and thermal ALD Al\(_2\)O\(_3\) films deposited in the OpAL reactor and PECVD Al\(_2\)O\(_3\) films. Lines serve as a guide for the eyes.

Figure 4. (Color online) Injection-level-dependent effective lifetime for n- and p-type c-Si wafers of various resistivities passivated by PECVD Al\(_2\)O\(_3\) with \(T_{\text{dep}} = 200^\circ\text{C} \) after annealing.

\(10^{12} \) cm\(^{-2} \) for PECVD Al\(_2\)O\(_3\) deposited at \(T_{\text{dep}} = 200^\circ\text{C} \) after annealing. \(Q_1 \) was determined by depositing positive corona charges on a passivated c-Si wafer using a similar approach, as described in Ref. 2. A sharp drop of the level of surface passivation (increase in \(S_{\text{eff,max}} \)) was observed at the point where the amount of negative fixed charge in the Al\(_2\)O\(_3\) was exactly balanced by positive corona charges. In the same way, a negative \(Q_1 \) of \((5 \pm 1) \times 10^{12} \) cm\(^{-2} \) for plasma ALD Al\(_2\)O\(_3\) was determined. These \(Q_1 \) values for plasma ALD and PECVD Al\(_2\)O\(_3\) are higher than the negative \(Q_1 \) values reported for microwave PECVD (\(Q_1 = 2 \times 10^{12} \) cm\(^{-2} \)) and sputtered Al\(_2\)O\(_3\) (\(Q_1 = 3 \times 10^{12} \) cm\(^{-2} \)). Our measured \(Q_1 \) values are within the range of the previously reported values of negative \(Q_1 \) between \(5 \times 10^{12} \) and \(13 \times 10^{12} \) cm\(^{-2} \) for plasma ALD Al\(_2\)O\(_3\).\(^{2,15,16} \) For thermal ALD Al\(_2\)O\(_3\) preliminary data suggest that after annealing the negative \(Q_1 \) values are significantly lower.

Comparing the material properties with the passivation performance of Al\(_2\)O\(_3\), it is apparent that conventional measures for high material quality, such as a high refractive index and mass density, stoichiometry (O/Al ratio \(\sim 1.5 \)), and low impurity content, do not directly reflect the passivation performance. In fact, a high level of surface passivation was obtained for a relatively wide range of Al\(_2\)O\(_3\) material properties, such as a refractive index and hydrogen concentration in the range of 1.55–1.65 and 2–7.5 atom %, respectively. This observation is consistent with the expectation that, ultimately, after annealing, the c-Si/Al\(_2\)O\(_3\) interface properties determine the level of surface passivation and that the Al\(_2\)O\(_3\) bulk material properties may deviate from those close to the c-Si interface.\(^{7,18} \) During postdeposition annealing, structural modification of the material bulk and interface takes place,\(^{2,8,18} \) which improves the surface passivation of c-Si. These structural rearrangements, in conjunction with the importance of the interface properties, might relax the requirements on the Al\(_2\)O\(_3\) bulk material properties significantly.

Conclusion

We have studied the influence of the substrate temperature on the material properties and the surface passivation performance of Al\(_2\)O\(_3\) films synthesized by plasma and thermal ALD and PECVD. The Al\(_2\)O\(_3\) material properties, such as mass density and hydrogen content, were dependent on the deposition technique used, but the resulting surface passivation performance was excellent for plasma and thermal ALD Al\(_2\)O\(_3\) at \(T_{\text{dep}} = 150-250^\circ\text{C} \) and for PECVD Al\(_2\)O\(_3\) at \(T_{\text{dep}} = 150-300^\circ\text{C} \). Consequently, a principal result of this work is that we have demonstrated that PECVD can be used to deposit high quality Al\(_2\)O\(_3\) films, resulting in exceptionally low surface recombination velocities and containing a high fixed negative charge density of \(\sim 6 \times 10^{13} \) cm\(^{-2} \). The deposition method of choice for Al\(_2\)O\(_3\) therefore depends largely upon the extent to which other relevant factors (such as deposition uniformity, conformity, throughput, and scalability) play a role in the envisaged application of Al\(_2\)O\(_3\).

Acknowledgments

We thank Dr. R. Seguin and Dr. P. Engelhart (Q-Cells) for fruitful discussions. Dr. V. Verlaan, Dr. M. Mandra, L. van den Elzen, C. van Helvoort, and M. Adams (TU/e) are acknowledged for assisting...
with the experiments. This work was supported by the German Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) under contract no. 0325150 (“ALADIN”).

Eindhoven University of Technology assisted in meeting the publication costs of this article.

References