His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor
Evers, T.H.; Appelhof, M.A.M.; Meijer, E.W.; Merkx, M.

Published in:
Protein Engineering, Design and Selection

DOI:
10.1093/protein/gzn029

Published: 01/01/2008

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 01. Dec. 2018
His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor

Toon H. Evers, Marieke A.M. Appelhof, E.W. Meijer and Maarten Merkx

Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Fluorescent indicators that allow real-time imaging of Zn(II) in living cells are invaluable tools for understanding Zn(II) homeostasis. Genetically encoded sensors based on fluorescence resonance energy transfer between fluorescent protein domains have important advantages over synthetic probes. We discovered that hexahistidine tags have a strong tendency to dimerize upon binding of Zn(II) in solution and we used this principle to develop a new protein-based sensor for Zn(II). Enhanced cyan and yellow fluorescent proteins were connected by long flexible peptide linkers and His-tags were incorporated at both termini of this fusion protein. The resulting sensor CLY9-2His allows the ratiometric fluorescent detection of Zn(II) in the nanomolar range. In addition, CLY9-2His is selective over the physiologically relevant metal ions Fe(II), Mn(II), Ca(II) and Mg(II). Our approach demonstrates the potential of using small peptides as metal-binding ligands in chelating fluorescent protein chimeras.

Keywords: fluorescent probes/FRET/GFP/hexahistidine tag/Zn(II) sensor

Introduction

Zinc is the second most abundant transition metal in the human body and is essential to a wide variety of cellular processes. This redox stable metal is a structural cofactor in, for example, transcription factors, performs a catalytic role as a Lewis acid in enzymes and functions as a neuromodulator (Berg and Shi, 1996; Lipscomb and Sträter, 1996; Frederickson et al., 2005; Mocchegiani et al., 2005). Despite its abundance, almost all intracellular Zn(II) is bound by proteins and intracellular free Zn(II) concentrations are estimated to be subnanomolar in mammalian cells (Simons, 1991a, 1991b; Adebodun and Post, 1995; Finney and O’Halloran, 2003; Chang et al., 2004; Bozym et al., 2006). The intracellular concentration is thus tightly regulated and disruption of zinc homeostasis can lead to apoptosis or necrotic cell death (Frederickson et al., 2005; Mocchegiani et al., 2005). Furthermore, a role for Zn(II) has been implicated in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Creutzfeldt-Jakob disease and amyotrophic lateral sclerosis (Mocchegiani et al., 2005).

Since fluorescence microscopy is ideally suited to monitor cellular processes, fluorescent indicators for Zn(II) are attractive tools to study Zn(II) homeostasis in living cells with high spatial and temporal resolution. Many fluorescent sensors for chelatable Zn(II) have been developed, ranging from small membrane-permeable organic probes to peptide-based indicators and recently also genetically encoded sensor proteins (Jiang and Guo, 2004; Taki et al., 2004; Ajayaghosh et al., 2005; Kawabata et al., 2005; Thompson, 2005; Woodroofe et al., 2005; Bozym et al., 2006; Qiao et al., 2006; Royzen et al., 2006; Evers et al., 2007; van Dongen et al., 2007). The latter have the advantage that they do not require expensive and laborious synthesis, allow non-invasive imaging, can be targeted to different organelles and can be easily adapted by mutagenesis. Tsien and coworkers pioneered the concept of genetically encoded sensors by developing the Ca(II) sensor Cameleon (Miyawaki et al., 1997). Cameleon and similar protein-based sensors consist of a sensor domain that is sandwiched between two spectrally distinct fluorescent proteins, usually enhanced cyan and yellow fluorescent protein (ECFP and EYFP). When ECFP is excited, its excitation energy can be transferred to EYFP in a process called Förster or fluorescence resonance energy transfer (FRET) (Lakowicz, 1999). Because the energy transfer efficiency is dependent on the distance between ECFP and EYFP and their relative orientation, a conformational change in the sensor domain causes a change in the fluorescence emission of the sensor. Due to the use of two fluorophores in one molecule, the fluorescent response of this type of sensor is ratiometric and not dependent on the sensor concentration.

Recently, we and others reported the first examples of genetically encoded FRET-based sensor proteins for Zn(II) (Qiao et al., 2006; Evers et al., 2007; van Dongen et al., 2007). During the development of new types of Zn(II) sensors, we made the serendipitous discovery that a simple fusion protein of ECFP and EYFP also possessed a moderate affinity for Zn(II), but only when a hexahistidine tag (His-tag) was present at the N-terminus. Here we show that this effect is due to the Zn(II)-mediated dimerization of two His-tagged ECFP-linker-EYFP proteins. This knowledge was subsequently applied to construct single-protein sensors that contain His-tags at both the N- and C-terminus and a variety of linker lengths between ECFP and EYFP. Besides providing an attractive new sensor system for intracellular Zn(II) imaging, this work also yields new insights into the coordination chemistry of His-tags with metal ions in solution.

Materials and methods

Cloning of expression vectors for CLYx-2His, His-ECFP and EYFP-His

ECFP and EYFP used in this study were originally amplified from pECPF-C1 and pEYFP-N1 vectors (Clontech). All oligonucleotides were purchased from MWG Biotech and restriction enzymes were obtained from New England Biolabs. The construction of the expression vector for His-CLY9, pET28-CLY9, was described before (Evers et al., 2006). Mutation of the stop codon in pET28-CLY9 to
introduce a C-terminal His-tag was complicated by the large sequence similarity between the ECFP and EYFP genes. The expression vector for CLY9-2His (pET28-CLY9-2His) was therefore obtained by first removing the stop codon in pET28-WD4-YFP (van Dongen et al., 2006) using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) and the following primers: 5′-GAGTGCGGCCGCTTTCTTGTA CAGCTGTACAAGT and 5′-GACGAGCCTGTAAGAAGCG GCCGACACT-3′, resulting in pET28-WD4-YFP-His. Subsequently, the sequence encoding EYFP was removed from pET28-CLY9 and replaced by DNA encoding EYFP with a C-terminal His-tag from pET28-WD4-YFP-His using BglI and Pst I restriction sites, resulting in pET28-CLY9-2His. Because the GGSGGS repeats in the linker sequence are separated by BamHI restriction sites, the expression vectors pET28-CLYx-2His (where x indicates the number of GGSGGS repeats in the linker) could be easily obtained by a partial digestion and religation procedure as described before (Evers et al., 2006). After transformation of Escherichia coli NovaBlue (Novagen) with the ligation mixture, colony PCR was used to identify clones containing pET28-CLY1-2His and pET28-CLY5-2His. The expression vector for EYFP-His (pET28-EYFP-His) was obtained after removing the sequence encoding WD4 from pET28-WD4-YFP-His by digestion with NcoI and religation of the vector. The expression vector for His-ECFP (pET28-ECFP) was created by introducing a stop codon after the DNA sequence encoding ECFP in pET28-CFP-ATOX (Van Dongen et al., 2006) using the following primers: 5′-GCTTCGGCATTC CTCACTCTGTACAGCTCG-3′ and 5′-GACGAGCCTGTAAGAAGCG GCCGACACT-3′. The correct open reading frames for all constructs were confirmed by DNA sequencing (BaseClear).

Protein expression and purification

Expression of His-CLY9, His-ECFP, EYFP-His and CLYx-2His was performed essentially as described before (Evers et al., 2006). Briefly, proteins were isolated from E.coli BL21 (DE3) cells and purified using nickel affinity chromatography on His-bind resin (Novagen). If necessary, proteins were further purified using size exclusion chromatography on a Sephacryl S-200 HR column (GE Healthcare), equilibrated with 50 mM Tris/HCl, 100 mM NaCl, pH 8.0. To remove the N-terminal His-tags of His-CLY9 and CLY9-2His, these proteins were dialyzed against 20 mM Tris/HCl, 150 mM NaCl, 2.5 mM CaCl2, pH 8.4 using 12–14 kDa molecular weight cutoff dialysis membranes (SpectroPore). Subsequently, 1 U thrombin/mg protein (Novagen) was added to the protein solution and incubated for 24 h at 4°C. The resulting proteins CLY9 and CLY9-His were purified from the cleaved His-tag using size exclusion chromatography as described above. All CLYx-2His proteins showed the absorption bands typical of ECFP and EYFP at the ratio that is expected when both domains are fully folded. Final protein preparations were dialyzed against 50 mM Tris/HCl, 100 mM NaCl, pH 8.0 and stored at −80°C.

Spectroscopy

UV-vis spectra were recorded on a Shimadzu MultiSpec 1501 photodiode array spectrometer. Protein concentrations were determined using molar extinction coefficients of 84 000 M⁻¹ cm⁻¹ at 514 nm for EYFP-His, CLY9, His-CLY9, CLY9-His and CLYX-2His (Patterson et al., 2001) and 29 000 M⁻¹ cm⁻¹ at 434 nm for His-ECFP (Rizzo et al., 2004). For all fluorescence measurements, protein samples were briefly treated with 4 M urea to disrupt the possible formation of aggregates. Urea was subsequently removed by passing the protein solution two times through a Zeba desalt spin column (Pierce), equilibrated with 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. Fluorescence measurements were performed on a Varian Cary Eclipse fluorescence spectrometer, fitted with horizontal and vertical polarizers in a fast filter wheel setup. Protein solutions were kept at 20°C by a Varian single cell Peltier accessory. Fluorescence emission spectra were recorded from 450 to 600 nm using 420 nm excitation and corrected for the wavelength-dependent efficiency of the instrument. Emission spectra were normalized using the emission intensity at 527 nm after 500 nm excitation. From these normalized spectra, the amount of FRET was expressed either as the EYFP/ECFP emission ratio $R_{527/475}$ (the emission intensity at 527 nm divided by the emission ratio at 475 nm) or as the difference between the emission intensities at 527 and 475 nm ($I_{527} - I_{475}$). Emission anisotropy measurements were performed using the automated polarization measurements ADL program (Varian), using polarized excitation light of 500 nm and recording the emission from 525.5 to 528.5 nm with 0.15 nm steps. Anisotropy values were calculated by averaging the anisotropy values obtained at each wavelength.

Zn(II) titrations

All Zn(II) titrations were performed using freshly prepared, slightly acidic stock solutions of ZnCl₂ (Sigma-Aldrich). After each addition, emission spectra were recorded and anisotropy measurements were performed as described above. For CLY9, His-CLY9 and CLY9-His, 6–1120 μM Zn(II) was added to a 0.5 μM protein solution in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. The emission difference $I_{527} - I_{475}$ as a function of the Zn(II) concentration was fit with GraphPad Prism 4.0 using:

$$I_{527} - I_{475} = A + B \left\{ \frac{[\text{protein}]_{\text{total}} + 1}{K_a [\text{Zn(II)}]_{\text{free}}} \right\} - \sqrt{\left(\frac{[\text{protein}]_{\text{total}} - 1}{K_a [\text{Zn(II)}]_{\text{free}}} \right)^2 - \frac{[\text{protein}]_{\text{total}}^2}{2} }$$

(1)

in which A and B are constants to fit the fluorescence intensity, K_a is the overall formation constant of the formation of the ternary complex, $[\text{protein}]_{\text{total}} = 0.5 \times 10^{-6}$ M and $[\text{Zn(II)}]_{\text{free}} = [\text{Zn(II)}]_{\text{total}}$ (van Dongen et al., 2006). For His-ECFP and EYFP-His, 6–1120 μM Zn(II) was added to a solution containing 0.5 μM of both proteins in 20 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. $I_{527} - I_{475}$ as a function of the Zn(II) concentration was fit using Eq. (1) with $[\text{protein}]_{\text{total}} = 1 \times 10^{-6}$ M and $[\text{Zn(II)}]_{\text{free}} = [\text{Zn(II)}]_{\text{total}}$. For CLY1-2His, CLY5-2His and CLY9-2His, titrations at low Zn(II) concentrations were performed at 50 mM protein concentration in a buffering system consisting of 50 mM Tris/HCl, 100 mM NaCl, 10%
MnSO₄, MgSO₄, NiSO₄ and Cd(OAc)₂ (Sigma-Aldrich) in water. Pb(II) was diluted from a 1000 μg/ml lead atomic standard solution (Sigma-Aldrich). Fluorescence emission spectra were recorded after addition of 20 μM Ni(II), Cd(II), Co(II), Cu(II), Fe(II), Mn(II) and Pb(II) or 10 mM Ba(II), Ca(II) or Mg(II) to a 50 nM solution of CLY9-2His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. After addition of 1 μM Zn(II) to these samples, the emission spectrum was recorded again and R_{527/475} was calculated.

Ni(II) titrations
Ni(II) titrations were performed by addition of 0.2–1250 μM NiSO₄ to a 50 nM solution of CLY9-2His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0 and emission spectra and anisotropy were recorded after each addition. The fluorescent response (I_{527}−I_{475}) from 0 to 9 μM Ni(II) was fit using Eq. (2), assuming that [Ni(II)]_{free}= [Ni(II)]_{total}.

\[I_{527}−I_{475} = A+B[M_{\text{metal}}]_{\text{free}}/(K_d+[M_{\text{metal}}]_{\text{free}}) \] (2)

Determination of metal selectivity
Metal additions were performed from stock solutions of BaCl₂ (Acros), CoSO₄, CaCl₂ (Merck), Fe(NH₄)₂(SO₄)₂, MnSO₄, MgSO₄, NiSO₄ and Cd(OAc)₂ (Sigma-Aldrich) in water. Pb(II) was diluted from a 1000 μg/ml lead atomic standard solution (Sigma-Aldrich). Fluorescence emission spectra were recorded after addition of 20 μM Ni(II), Cd(II), Co(II), Cu(II), Fe(II), Mn(II) and Pb(II) or 10 mM Ba(II), Ca(II) or Mg(II) to a 50 nM solution of CLY9-2His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. After addition of 1 μM Zn(II) to these samples, the emission spectrum was recorded again and R_{527/475} was calculated.

Results
Zn(II)-mediated dimerization of His-tagged proteins
We recently reported the construction of a new ratiometric Zn(II) sensor protein called ZinCh-x by introduction of two Zn(II) binding amino acids (Y39H and S208C) at the dimerization interface of both fluorescent protein domains in an ECFP-linker-EYFP fusion protein (Evers et al., 2007). The flexible linker separating the two fluorescent domains in these chimeras consisted of x GGSGGS repeats, with x=1–9. The precursor proteins for these fusion proteins contain an N-terminal hexahistidine sequence that allows easy purification, but which is normally removed by cleavage with thrombin. During this work, we noticed that CFP-linker-YFP (CLY) without the Zn(II) binding mutations also displayed an increase in FRET in the presence of Zn(II) when the His-tag was not removed after protein purification. Figures 1A and B show that this protein, His-CLY9, displayed a large increase in the EYFP/ECFP emission ratio (R_{527/475}) in the presence of micromolar concentrations of Zn(II). Removal of the His-tag abolished this effect, showing that the His-tag was involved in this specific Zn(II) binding. To further study the nature of the conformational change upon Zn(II) binding, the fluorescence emission anisotropy of the EYFP domain of His-CLY9 was monitored during a Zn(II) titration (Fig. 1C). In the absence of Zn(II), His-CLY9 displayed a high anisotropy of 0.34. This value is equal to that measured for single EYFP, indicating that the rotational diffusion of the protein domain is unaffected by the fusion with the ECFP domain (Evers et al., 2006; Vinkenborg et al., 2007). In the presence of Zn(II), a strong decrease in anisotropy was observed. The only plausible explanation for this enhanced depolarization is energy transfer from one EYFP domain to another, differently oriented EYFP domain (homotransfer). The Förster distance for the EYFP–EYFP pair is 51Å (Patterson et al., 2000), which means that His-CLY9 most likely dimerized upon binding of Zn(II). Because the His-tags are essential for Zn(II) binding, we concluded that the His-tags of His-CLY9 dimerize in the presence of Zn(II), forming the complex depicted in Fig. 2A. The increase in energy transfer between ECFP and EYFP in this complex is due to the presence of a second, intermolecular energy transfer. The Fo¨ rster distance for the EYFP–EYFP pair is 51Å (Patterson et al., 2000), which means that His-CLY9 most likely dimerized upon binding of Zn(II). Because the His-tags are essential for Zn(II) binding, we concluded that the His-tags of His-CLY9 dimerize in the presence of Zn(II), forming the complex depicted in Fig. 2A. The increase in energy transfer between ECFP and EYFP in this complex is due to the presence of a second, intermolecular energy transfer.
transfer pathway. Assuming the formation of a 2:1 His-CLY9:Zn(II) complex, the increase in energy transfer could be fit well with an apparent association constant K_A of $7.7 \pm 1.1 \times 10^{10} \text{M}^{-2}$ (Fig. 1B).

A new sensor design based on Zn(II)-induced dimerization of His-tags

Based on the finding that His-tags dimerize in the presence of Zn(II), we reasoned that a chimera of ECFP and EYFP carrying a His-tag at both termini would display an enhanced affinity for Zn(II). The effective concentration of one His-tag with respect to the other can reach values in the millimolar range when both His-tags are located on the same molecule, which increases the likelihood of intramolecular complex formation (Zhou, 2003; Van Dongen et al., 2007). Another advantage of such a single protein sensor is that the fluorescent response is not dependent on the protein concentration (Fig. 2B). Because the expression vector for His-CLY9 already contained a sequence encoding for a His-tag downstream of the EYFP gene, the deletion of a single base pair in the original stop codon was sufficient to create CLY9-2His, which contains an additional C-terminal KAAALEHHHHH sequence.

The emission ratio of ~ 2.1 that is observed for CLY9-2His in the absence of Zn(II) is the same as was previously reported for the same protein without His-tags (CLY9), which corresponds to an energy transfer efficiency of $\sim 45\%$ (Evers et al., 2006). The introduction of the His-tags as such did therefore not enhance the formation of intramolecular domain–domain interactions. Addition of 0.5 μM Zn(II) to CLY9-2His yielded a 1.6-fold increase in EYFP/ECFP emission ratio (Fig. 3A), corresponding to an increase in energy transfer efficiency to $\sim 65\%$. Addition of an excess of EDTA to the Zn(II)-bound sensor completely reversed the change in fluorescence, indicating that Zn(II) binding is reversible. A Zn(II) titration using a Zn(II) buffering system revealed that CLY9-2His has a much higher Zn(II) affinity than His-CLY9. The fluorescent response could be fit by a simple 1:1 binding model, yielding a K_d of $47 \pm 4 \text{nM}$ for CLY9-2His (Fig. 3B). This large enhancement in affinity for Zn(II) is consistent with the preferred intramolecular association of the N- and C-terminal His-tags of CLY9-2His. Addition of Zn(II) to CLY9-2His did not affect its EYFP anisotropy, which also confirmed the formation of an intramolecular Zn(II) complex and the absence of dimer formation (Fig. 3B).

To allow careful comparison of the Zn(II) affinity for the intramolecular versus the intermolecular association of His-tags, we also produced the His-tagged fluorescent proteins without a connecting linker. A Zn(II) titration for a 1:1 mixture of ECFP with an N-terminal His-tag (His-ECFP) and EYFP with a C-terminal His-tag (EYFP-His) yielded an overall association constant of $5.3 \pm 0.9 \times 10^{10} \text{M}^{-2}$ (Fig. 4A), similar to that for the formation of the Zn(II)-bridged His-CLY9 dimer. To investigate whether two C-terminal His-tags could also bind Zn(II) with the same affinity, the N-terminal His-tag of CLY9-2His was removed. The resulting protein CLY9-His also formed oligomers upon
binding of Zn(II) and displayed similar Zn(II) binding behavior ($K_A = 8.5 \pm 1.5 \times 10^{10} M^{-2}$, Fig. 4B). This result shows that the location of the His-tag at either the N- or C-terminus of the protein did not influence the affinity for Zn(II).

Dependence of ratio change and affinity on linker length

The length of the linker between the fluorescent domains can influence the difference in energy transfer efficiency between Zn(II)-bound and unbound states, but also determines the effective concentration of the Zn(II) binding sites. To determine the linker length dependence of the relative ratio change (RRC) and Zn(II) affinity, we also constructed sensors with 1 and 5 GGSGGS repeats in the flexible linker, CLY1-2His and CLY5-2His. In the absence of Zn(II), the fluorescence emission ratio decreased with increasing linker length (Fig. 5A). We previously showed that the corresponding energy transfer efficiencies can be quantitatively understood by modeling the linker as a random coil (Evers et al., 2006), indicating that the sensor proteins are in an open conformation for all linker lengths. In the presence of Zn(II), the fluorescence emission ratio is increased for all proteins, but still shows a dependence on the linker length. The largest RRC, 1.6-fold, was obtained for the sensor with longest peptide linker, CLY9-2His. The affinity for Zn(II) was not significantly affected by the linker length, despite a difference of 48 residues in linker length between CLY9-2His and CLY1-2His (Fig. 5B).

Metal selectivity of CLY9-2His

The application of CLY9-2His in intracellular imaging applications not only requires a high affinity for Zn(II), but also selectivity over other physiologically relevant metals. To determine whether other metal ions could also mediate the dimerization of His-tags (Fig. 6). After each addition, 1 mM Zn(II) was added to determine whether the other metals could compete for Zn(II) binding to the His-tags (white bars).

Fig. 4. (A) Zn(II) titration for a mixture of 0.5 μM His-ECFP and 0.5 μM EYFP-His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0, showing the difference in fluorescence emission intensity at 527 and 475 nm. The solid line is a fit of the data using Eq. (1) and $K_A = 5.3 \pm 0.9 \times 10^{10} M^{-2}$. (B) Zn(II) titration experiment for 0.5 μM CLY9-His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0, showing $I_{527}-I_{475}$ (solid circles) and the EYFP anisotropy (open circles) as a function of Zn(II) concentration. The solid line is a fit of $I_{527}-I_{475}$ using Eq. (1) and $K_A = 8.5 \pm 1.5 \times 10^{10} M^{-2}$.

Fig. 5. Linker length dependence of sensor properties, measured at 50 nM protein concentration in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. (A) The EYFP/ECFP emission ratios for CLY1-2His, CLY5-2His and CLY9-2His in the absence (white bars) and the presence of 0.5 μM Zn(II). The corresponding relative ratio change (RRC) upon Zn(II) binding is indicated for each protein. (B) The dissociation constants of Zn(II) binding for CLY1-2His, CLY5-2His and CLY9-2His as determined from Zn(II) titration experiments, using Eq. (2) to fit the fluorescence emission differences $I_{527}-I_{475}$. The error bars represent the standard error of the fit.
these metals seemed to be lower than for Zn(II), however, as subsequent addition of 1 μM Zn(II) still resulted in an appreciable increase in R_{527475}. Other divalent metal ions such as Fe(II), Mn(II) and Pb(II) (all tested at 20 μM), or 10 mM of Ba(II), Ca(II) and Mg(II) did not compete for such as Fe(II), Mn(II) and Pb(II) (all tested at 20 μM), or 10 mM of Ba(II), Ca(II) and Mg(II) did not compete for such metals. Instead addition of 1 μM Zn(II) caused a similar increase in R_{527475} as observed in the absence of other metals. Because Ni(II) was the only metal that could effectively compete with Zn(II) binding and because His-tagged proteins are often purified using immobilized metals, we investigated the affinity for Ni(II) in more detail. A Ni(II) titration revealed a K_a of 8.8 ± 0.7 × 10^{-7} M. (B) The EYFP/ECFP emission ratio (filled circles) showed an increase at low Ni(II) concentration and a decrease at higher Ni(II) concentrations, whereas the anisotropy (open circles) only showed a small increase at low Ni(II) concentrations.

Discussion

Since its introduction by Hochuli and coworkers, the hexahistidine tag has become one of the most widely used tags for protein purification (Hochuli et al., 1988; Gaberc-Porekar and Menart, 2001). Although commonly used in combination with Ni(II) ions immobilized on a support containing nitrioltriacetic acid (NTA) groups (Hochuli et al., 1987), its imidazole moieties can also bind to free coordination sites of immobilized Cu(II), Co(II) and Zn(II) (Casey et al., 1995; Pasquinelli et al., 2000; Gaberc-Porekar and Menart, 2001). In these complexes, the immobilized chelating group provides three or four ligands to the metal ion, while two or three adjacent histidines of the His-tag complete the octahedral coordination shell (Chen et al., 2000; Kruppa and König, 2006). Our results show that in solution Zn(II) prefers coordination by two His-tags, probably because occupation of all coordination sites by a single His-tag is sterically unfavorable. Besides its use in protein purification, there are a growing number of applications that take advantage of the metal affinity of this genetic tag. For example, His-tags have been used for the selective and oriented immobilization of proteins on surfaces functionalized with metal chelating groups (Schmitt et al., 1994; Shnek et al., 1994; Nieba et al., 1997; Ueda et al., 2003; Xu et al., 2004; Abad et al., 2005; Johnson and Martin, 2005; Lata and Piehler, 2005). In a similar manner, His-tagged proteins can be specifically and reversibly labeled with, for example, a metal chelating biotin or fluorophore (O’S. Shanessy et al., 1995; Kapanidis et al., 2001; Lata et al., 2005; Goldsmith et al., 2006). To improve the stability of these complexes, several groups have explored the use of multivalent interactions using multivalent NTA ligands (Lata et al., 2005; Ogida et al., 2006; Kim et al., 2007) and/or proteins with multiple His-tags (Khan et al., 2006). However, the results reported here suggest that adventitious Zn(II) in buffers or leaching of immobilized Ni(II) could cause an intramolecular interaction between two His-tags within the same protein, which might severely attenuate the binding properties of such proteins.

The high affinity of these Zn(II) sensors is based on the chelate effect. Because both His-tags are located on the same molecule, their high apparent or effective concentration promotes complex formation, resulting in an enhanced apparent affinity. The effective concentration c_{eff} is related to the enhancement in apparent affinity by:

$$c_{eff} = \frac{K'_a}{K'_A}$$

where K'_A and K'_A are the overall association constants of Zn(II) binding by the covalently linked and separate proteins, respectively. From the observed apparent formation constants for Zn(II) binding by the separate proteins ($K'_A = 5.3 \times 10^{10}$ M^{-2}) and CLY9-2His ($K'_A = 2.1 \times 10^7$ M^{-1}), an effective concentration of 4.0×10^{-4} M can be calculated. This value is only slightly lower than the values in the millimolar range that we recently determined for a Zn(II) sensor using the same linker length (van Dongen et al., 2007).

The use of small peptides instead of protein domains for target recognition should allow the fluorescent domains to come in close proximity upon target binding and thus result in a large change in fluorescence. An explanation for the

Fig. 7. Ni(II) titration experiments for 50 nM CLY9-2His in 50 mM Tris/HCl, 100 mM NaCl, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, pH 8.0. (A) The fluorescent response to additions of 0.2–9 μM Ni(II) was fit with Eq. (2), yielding a K_a of 8.8 ± 0.7 × 10^{-7} M. (B) The EYFP/ECFP emission ratio (filled circles) showed an increase at low Ni(II) concentration and a decrease at higher Ni(II) concentrations, whereas the anisotropy (open circles) only showed a small increase at low Ni(II) concentrations.
relatively modest change in emission ratio that is observed upon Zn(II) binding to CLY9-2His is that the intervening sequences between the His-tags and the protein domains provide additional spacing between the protein domains in the Zn(II)-bound state. There are 10 residues located between the N-terminal His-tag and ECFP and 15 residues between EYFP and the C-terminal His-tag. Therefore, the protein does not adopt a fixed conformation upon binding of Zn(II), which is also reflected in the linker length dependence of the fluorescence emission ratio in the Zn(II)-bound state. Efforts to obtain a well-defined Zn(II)-bound conformation, e.g. by placement of the His-tags at other positions (Paramban et al., 2004) or by shortening the peptide spacers between the His-tags and the fluorescent domains, are therefore predicted to result in a larger change in the fluorescence emission ratio. Another possibility to improve the ratiometric change is changing the relative orientation of the chromophores by using circular permutants of the fluorescent domains (Baird et al., 1999; Nagai et al., 2004). For in vivo application, the sensors could be further improved by the use of new GFP variants such as Cerulean, which unlike ECFP has a single exponential decay time (Rizzo et al., 2004), and Citrine, which is more pH stable compared to EYFP (Shaner et al., 2005).

In the current sensor design, the intrinsic affinity of His-tags for Zn(II) combined with a high effective concentration have resulted in a K_d of 47 nM, even though the His-tags were not in any way designed or optimized for the binding of free Zn(II). The Zn(II) affinity of CLY-2His is slightly higher than that of ZinCh, but still considerably weaker than that of two other recently developed genetically encoded FRET-based Zn(II) sensors. Eide and coworkers constructed a sensor with low nanomolar affinity for Zn(II) by flanking two zinc finger domains by ECFP and EYFP (Qiao et al., 2006). Our group reported a Zn(II) sensor with a tunable femtomolar to picomolar affinity (van Dongen et al., 2007), based on the Zn(II)-induced dimerization of the copper chaperones Atox1 and WD4 (van Dongen et al., 2006). While the latter sensors may be more suitable to probe the subnanomolar cytosolic concentrations of free Zn(II) under normal cellular conditions (Simons, 1991a, 1991b; Adebudun and Post, 1995; Outten and O’Halloran, 2001; Chang et al., 2004; Bozym et al., 2006), higher concentrations have been reported for specific cell types, and organelles, or after various stimuli (Zalewski et al., 1993; Brand and Kleineke, 1996; Sensi et al., 1997; Canzoniero et al., 1999; Sensi et al., 1999). For example, elevated extracellular Zn(II) concentrations in nerve tissue (Assaf and Chung, 1984) can result in intracellular free Zn(II) concentrations ranging from 35 nM to several micromolar (Koh et al., 1996; Sensi et al., 1997; Canzoniero et al., 1999; Sensi et al., 1999). Furthermore, after oxidative stress or during apoptosis, Zn(II) can be released from cellular stores like presynaptic boutons or metallothionein (Zalewski et al., 1994; Aizenman et al., 2000; Maret, 2000; Truong-Tran et al., 2001; Fredericksen et al., 2002; Spahl et al., 2003). In contrast to other genetically encoded sensors that rely on cysteines for Zn(II) binding, Zn(II) binding to CLY9-2His relies solely on histidine residues, making this sensor redox-insensitive. An important issue that remains to be addressed is how fast the sensor response is, as this will determine its suitability for intracellular monitoring of Zn(II) fluctuations in, for example, neuronal cells. Finally, several possibilities to improve both the affinity and the selectivity of the current sensor can be envisioned. The number of histidine residues and also their spacing could be adapted to improve the binding characteristics (Pasquinelli et al., 2000). Alternatively, phase display peptide libraries could be screened for alternative tags with enhanced metal selectivity.

Conclusion

We have developed a genetically encoded fluorescent sensor for Zn(II) based on the Zn(II)-induced dimerization of His-tags. CLY9-2His as a genetically encoded sensor is unique in its use of small peptides for target recognition. An important advantage of using peptides instead of proteins as the sensor domain is that peptide display techniques can be applied to select peptide pairs with a higher Zn(II) affinity from large peptide libraries. For example, phage display has been used to select peptides that can bind immobilized Cu(II) (Patwardhan et al., 1997) or Ni(II) (Patwardhan et al., 1998) and fimbria display has revealed novel Zn(II) chelating peptides (Kjaergaard et al., 2001). The approach described here for Zn(II) could thus be extended for other targets by incorporation of these phage display-derived peptide sequences into chelating fluorescent protein chimeras.

Acknowledgements

The authors thank J.H.M. de Goeij, M.A. Lijbers, J.H.S. Nieuwenhuijzen, M.M.G. Rooijackers, W.F. Rutup, and M. de Smet for their assistance in protein production and fluorescence measurements.

References
