Optical Characterization of Plasma-Deposited SiO2-like Layers on Anisotropic Polymeric Substrates

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• You may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Nov. 2023
Tuesday Morning, November 10, 2009

Spectroscopic Ellipsometry III

Moderator: M. Schubert, University of Nebraska - Lincoln

8:00am AS+EM+MS+TF-TuM1 Optical Characterization of Plasma-Deposited SiO₂-like Layers on Anisotropic Polymeric Substrates, G. Aresta, Eindhoven Univ. of Tech., The Netherlands, A.P. Prensboom, Materials Innovation Inst. (M2i), The Netherlands, S.A. Starostin, Eindhoven Univ. of Tech., The Netherlands, H. De Vries, Fujifilm Mfg Europe B.V., The Netherlands, M.C.M. van de Sanden, M. Creatore, Eindhoven Univ. of Tech., The Netherlands

Amongst the most common thin film characterization tools, spectroscopic ellipsometry (SE) is increasingly used to determine the layer optical properties. Such characterization is still a challenge when optical anisotropy is present either in the film or in the substrate. The study of thin films deposited on polymeric substrates is an example because polymers often show optical anisotropy. In this contribution the optical characterization of poly(ethylene 2,6-naphthalate) (PEN) in its transparent region is carried out. The full index ellipsoid, with respect to the laboratory frame. Reflection multi-angle spectroscopic ellipsometry (SE) is increasingly used to determine the layer optical properties. Interfaces of bonded wafer pairs have been performed in addition, as well as by transmission electron microscopy (TEM). TEM clearly shows that there is no discernible interface between the native oxide on one side and the thermal oxide on the other side. From the spectroscopic ellipsometry data it was found that the top surface stoichiometry is chemically changed, which favors bonding. Finally a model for the mechanism that explains the experimental results will be presented. [1] Q.-Y. Tong, U. Gösele, Semiconductor Wafer Bonding: Science and Technology, Wiley

8:40am AS+EM+MS+TF-TuM3 Applications of Ellipsometry and Polarimetry to Real-Time Analysis and Control of Epitaxial Growth, D.E. Aspnes, North Carolina State University and Kyung Hee University, Korea

Many aspects of epitaxial growth are now mainstream technologies, routine enough that real-time monitoring simply gets in the way. However, the situation is different in emerging areas involving the heteroepitaxy of chemically or lattice-mismatched materials, where paths to success through kinetics and thermodynamics are not well understood, or even identified. Here, real-time analysis and control by ellipsometry or polarimetry not only can provide unique information but may also be essential in achieving objectives. In particular, these techniques can provide information about the critical initial stages of growth well down into the submonolayer scale in addition to the evolution of growth beyond the first monolayer. Further, analysis of data records allows diagnostics to be performed after the fact, permitting detailed analyses of processes that went wrong -- or right. I provide examples from our experiences with organometallic chemical vapor deposition, including sample-driven feedback-control of composition and the morphology of surfaces of Ge/Sb thin films of the initial phases of growth up to 40 nm thick. I also present the optical function spectra of different phase-change materials.

9:00am AS+EM+MS+TF-TuM5 Spectroscopic Ellipsometry Study of Phase-Change Materials for Data Storage Applications, E. Guevourt, STMicroelectronics, France, C. Ballois, LTM - CNRS/UJF/INPG, France, S. Lhostis, STMicroelectronics, France, Ch. Licitra, A. Roule, CEA - LETI, France, B. Pellissier, LTM - CNRS/UJF/INPG, France, S. Maitrejean, CEA - LETI, France

Chalcogenide materials are widely used for phase change data storage based on the remarkable change of properties between the crystalline and the amorphous phase. The fast and reversible phase transition is accompanied by a high electrical and optical contrast and consequently a change of electronic structure which is still not well understood. In this work we present the optical function spectra of different phase-change materials. Ge,Sb,Te₅, Ge-doped GeTe and N-doped GeTe films were grown by co-sputtering PVD method on 200 mm wafers and were treated with different annealing temperatures. Film thickness, oxidation and composition were evaluated using X-Ray Reflectivity, Rutherford BackScattering and Angle Resolved XPS.

Optical parameters were fitted from data measured by variable angle spectroscopic ellipsometry. Measurements were carried out between 0.5 and 8 eV for Ge,Sb,Te₅ samples in amorphous, fcc and hc crystalline phases in order to characterize phase-change bulk layer and surface oxide layer. Ge doped GeTe and N-doped GeTe samples were measured between 0.6 and 6 eV for amorphous and rhombohedral phases.

Ge, Sb and Te thin films are also elaborated by PVD in order to obtain optical laws for the different elements and well defined the optical response of their oxides. Then, optical responses of GST, Ge-doped GeTe and N-doped GeTe films are simulated using Tauc Lorentz law and including the presence of the oxidized upper layer identified by XPS and XRR. Finally, Ge-rich GeTe films before and after crystallization are analyzed using Tauc Lorentz law as well as BEMA. Influence of Ge and N doping in GeTe optical properties (in terms of gap and refractive index) is then discussed. The comparison between as-deposited samples and annealed samples shows some raise the presence of Ge phases in a GeTe medium.