Optical Characterization of Plasma-Deposited SiO2-like Layers on Anisotropic Polymeric Substrates
Aresta, G.; Premkumar, P.A.; Starostine, S.; Vries, de, Hinrik; van de Sanden, M.C.M.; Creatore, M.

Published in: Proceedings of the 56th international American Vacuum Society Symposium & Exhibition (AVS 56) 8-13 November 2009, San Jose, California

Published: 01/01/2009

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spectroscopic Ellipsometry III

Moderator: M. Schubert, University of Nebraska - Lincoln

8:00am AS+EM+MS+TF-TuM1 Optical Characterization of Plasma-Deposited SiO$_2$-like Layers on Anisotropic Polymeric Substrates, G. Aresta, Eindhoven Univ. of Tech., The Netherlands, A.P. Premkumar, Materials Innovation Inst. (MI2), The Netherlands, S.A. Starostin, Eindhoven Univ. of Tech., The Netherlands, H. de Vries, FUJIFILM Mfg Europe B.V, The Netherlands, M.C.M. van de Sanden, M. Creatore, Eindhoven Univ. of Tech., The Netherlands

Amongst the most common thin film characterization tools, spectroscopic ellipsometry (SE) is increasingly used to determine the layer optical properties. Such characterization is still a challenge when optical anisotropy is present either in the film or in the substrate. The study of thin films deposited on polymeric substrates is an example because polymers often show optical anisotropy. In this contribution the optical characterization of poly(ethylene 2,6-naphthalate) (PEN) in its transparent region is carried out.

The SiO$_2$-like samples have been deposited in Atmospheric Pressure Gas Discharge Plasma (APGD) and Optical Pressure Gas Discharge Plasma (OPGD) at high and low duty cycles. SE measurements have been performed in ambient air and in vacuum: an increase of the refractive index values with the duty cycle has been observed, attributed, on the basis of complementary diagnostics, to an increase in film density with the duty cycle.

References:

8:20am AS+EM+MS+TF-TuM2 Spectroscopic Ellipsometry in the Mid IR and UV-VIS for Investigating Low Temperature Plasma Activated Wafer Bonding T. Plach, K. Hingerl, University Linz, Austria, V. Dragoi, M. Wimpflinger, EV Group, Austria

Low temperature plasma activated direct wafer bonding (LTPADWB) for Si-SiO$_2$ interfaces is a process that lowers the required annealing temperatures, from usually 900°C down to 250°C necessary for reaching high bond strength. The mechanism behind this improvement is still under discussion: the low temperature steps for the hydrophilic process are interpreted as follows: Up to 100°C the substrate surfaces are held together via van der Waals interaction which is mediated by a few monolayers of water. In the range of 100-200°C the water diffuses away from the interface both along the interface and through the oxide into the crystalline bulk, where it reacts with the silicon and forms oxide. The remaining half of the bond strength is usually attributed to a closing of gaps at the interface[1], which starts with conventional techniques at the softening temperature of the thermal oxide at around 850-900°C.

In comparison the same surface energies for the LTPADWB process are already reached at 250°C. To clarify the mechanism for this process, different bonding experiments were performed to evaluate the lifetime of the surface activation and the achievable bond strength when using substrates with various orientations. By covering half of the wafer during plasma activation, comparisons between the activated and non-activated region could be made by mid IR and UV-VIS spectroscopic ellipsometry covering the energy range from phonon energies to the UV (30meV-6.5eV). it turns out that the spectral shape of the phonon peaks as well as the spectral shape of the critical points in the UV (E_1, E_2) significantly change and even the peak position changes.

Correlation measurements, by Auger analysis and by X-ray photoelectron spectroscopy,Interfaces of bonded wafer pairs have been performed in addition, as well as by transmission electron microscopy (TEM). TEM clearly shows that there is no discernible interface between the native oxide on one side and the thermal oxide on the other side.

From the spectroscopic ellipsometry data it was found that the top surface stoichiometry is chemically changed, which favors bonding. Finally a model for the mechanism that explains the experimental results will be presented.

8:40am AS+EM+MS+TF-TuM3 Applications of Ellipsometry and Polarimetry to Real-Time Analysis and Control of Epitaxial Growth, D.E. Aspnes, North Carolina State University and Kyung Hee University, Korea

INVITED

Many aspects of epitaxial growth are now mainstream technologies, routine enough that real-time monitoring simply gets in the way. However, the situation is different in emerging areas involving the heteroepitaxy of chemically or lattice-mismatched materials, where paths to success through kinetics and thermodynamics are not well understood, or even identified. Here, real-time analysis and control by ellipsometry or polarimetry not only can provide unique information but may also be essential in achieving objectives. In particular, the key to success can often come from the critical initial stages of growth well down into the submonolayer scale in addition to the evolution of growth beyond the first monolayer. Further, analysis of data records allows diagnostics to be performed after the fact, permitting detailed analyses of processes that went wrong -- or right. I provide examples from our experiences with organometallic chemical vapor deposition, including sample-driven feedback-control of composition and the morphology of submonolayer growth layers of GaSb on GaAs, GaP on Si, and ZnO on sapphire. The latter application involves a material whose precursors react in the gas phase and where the product sublimates. Real-time polarimetric data provided the information needed to grow high quality material.

9:00am AS+EM+MS+TF-TuM4 Spectroscopic Ellipsometric Study of Phase-Change Materials for Data Storage Applications, E. Gourvest, STMicroelectronics, France, C. Vallée, LTM - CNRS/STMicroelectronics, France, S. Lhostis, STMicroelectronics, France, Ch. Licitra, A. Roule, CEA - LETI, France, B. Pelossier, LTM - CNRS/STMicroelectronics, France, S. Maitrejean, CEA - LETI, France

Chalcogenide materials are widely used for phase change data storage based on the remarkable change of properties between the crystalline and the amorphous phase. The fast and reversible phase transition is accompanied by a high electrical and thermal contrast and consequently a change of electronic structure which is still not well understood. In this work we present the optical function spectra of different phase-change materials. Ge$_2$Sb$_2$Te$_5$, Ge-doped GeTe and N-doped GeTe films were grown by co-sputtering PVD method on 200 mm wafers and were treated with different annealing temperatures. Film thickness, oxygenation and composition were evaluated using X-Ray Reflectivity, Rutherford BackScattering and Angle Resolved XPS.

Optical parameters were fitted from data measured by variable angle spectroscopic ellipsometry. Measurements were carried out between 0.5 and 8 eV for Ge$_2$Sb$_2$Te$_5$ samples in amorphous, fcc and hcrustalline phases in order to characterize phase-change bulk layer and surface oxide layer. Ge doped GeTe and N-doped GeTe samples were measured between 0.6 and 6 eV for amorphous and rhombohedral phases.

Ge, Sb and Te thin films are also elaborated by PVD in order to obtain optical laws for the different elements and well defined the optical response of their oxides. Then, optical responses of GST, Ge-doped GeTe and N-doped GeTe films are simulated using Tauc Lorentz law and including the presence of the oxidized upper layer identified by XPS and XRR. Finally, Ge-rich GeTe films before and after crystallization are analyzed using Tauc Lorentz law as well as BEMA. Influence of Ge and N doping in GeTe optical properties (in terms of gap and refractive index) is then discussed. The comparison between as-deposited samples and annealed samples shows in some cases the presence of Ge phases in a GeTe medium.

Tuesday Morning, November 10, 2009