Coherent electron beams for ultrafast structural dynamics

Citation for published version (APA):

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
'Towards the Photonic NanoPhone' (W.J. Westerveld)

In the Photonic NanoPhone project, we work towards a novel type of microphone for ultrasonic frequencies based on a micromachined ultrasound receiver with read-out based on integrated optical resonators. We will present this concept, as well as the latest results in this project which is the characterization of the influence of strain on the optical properties of silicon waveguides.

'Coherent electron beams for ultrafast structural dynamics' (O.J. Luiten)

In 2009 the first hard X-ray Free Electron Laser has become operational – LCLS at Stanford University – which enables recording the full diffraction pattern of a tiny protein crystal in a single, few-femtosecond shot. Why bother about electrons anymore? Electrons and X-rays both enable the study of structural dynamics at atomic length scales, yet the information that can be extracted by probing with either electrons or X-rays is quite different and, in fact, complementary. A pulsed electron source with the X-ray Free Electron Laser capability of performing single-shot, femtosecond diffraction would therefore be highly desirable.

The primary obstacle facing the realization of such an electron source is the space charge problem: packing the number of electrons required for recording a full diffraction pattern in a single sub-picosecond pulse will inevitably lead to a rapid Coulomb expansion of the pulse and therefore loss of temporal resolution. We have developed a method, based on resonant radio-frequency techniques, to invert the Coulomb expansion and thus compress 0.2 pC, 100 keV electron bunches down to sub-100 fs bunch lengths. We have used these bunches to produce high-quality transmission diffraction patterns in a single-shot of gold, aluminium, silicon and graphite.

Ultrashort electron bunches are traditionally generated by pulsed photoemission from metal cathodes. The coherence of the resulting beams is however limited and in fact insufficient for, e.g., studies of protein samples. We have developed a new, ultracold pulsed electron source, based on near-threshold photo-ionization of a laser-cooled gas, which is characterized by effective electron temperatures three orders of magnitude lower than conventional sources. The improved coherence properties should enable single-shot, sub-picosecond studies of the structural dynamics of macromolecular crystals.