Ultra-fast all-optical demultiplexer for 320Gbits/s serial data exploiting sum-frequency generation in a PPLN waveguide

Gomez Agis, F.; Okonkwo, C.M.; Albores Mejia, A.; Tangdiongga, E.; Dorren, H.J.S.

Published in:

Published: 01/01/2010

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Dec. 2018
Ultra-fast All-Optical Demultiplexer for 320Gbits/s Serial Data exploiting Sum-Frequency Generation in a PPLN Waveguide

COBRA Research Institute, Eindhoven University of Technology, NL 5600 MB, The Netherlands
*Email: f.gomez-agis@tue.nl

Abstract An ultra-fast all-optical demultiplexer based on sum-frequency generation in a Periodically-Poled Lithium Niobate waveguide is demonstrated. Error free performance is achieved with respective penalties of 1.5dB and 2dB for 160-to-10Gbit/s and 320-to-10 Gbit/s demultiplexing operations.

Introduction All-optical demultiplexing (AOD) is an essential function in optical time-division multiplexed (OTDM) systems, which serves to extract base-rate channels from a time-multiplexed high bit-rate signal. AODs based on high nonlinear fibers [1] and semiconductor optical amplifiers [2] have been demonstrated at 320 Gbit/s. The first type offers the potential for ultrafast operation based on the femtosecond-scale time-response of the Kerr nonlinearity, whose switching response is limited by the pulse width of the control pulse and the walk-off between the signal and the control pulses due to the fibre length. The latter is limited by the switching performance due to residual slow recovery times and losses by optical filtering. Interest on periodically-poled lithium niobate (PPLN) as an ultrafast switching device resides on the femtosecond-scale response of the $\chi^{(2)}$ nonlinearity, low noise, compactness and high conversion efficiency at low optical powers. A first demonstration using PPLN as an AOD has been carried out at 160 Gbit/s by exploiting a second-order cascaded nonlinear effect [3]. The control signal, located in the C-band, is first frequency-doubled by second harmonic (SH) generation. Subsequently, the down-converted signal acts on the data pulses via difference-frequency generation (DFG) extracting the selected channel in the C-band. Nevertheless, the maximum allowed bit-rate is limited by the broadening effect induced on the control pulses due to the group-velocity mismatch (GVM) between the fundamental wavelength and its SH. A second demonstration consisted of adding/dropping a 10 Gbit/s tributary from an aggregated 320 Gbit/s signal by exploiting the sum-/difference-frequency generation and pump depletion effects [4] employing high optical powers. However, no characterization of the PPLN as an AOD was carried out. Here, we present a demultiplexing scheme based on sum-frequency generation (SFG) where the maximum allowed operating bit-rate is mainly controlled by the pulselwidth of the control pulse. The broadening effect introduced by GVM does not act on the control pulse but on the extracted channel. This scheme allows error-free operation at 320 Gbit/s using moderate optical powers.

SFG-based All-Optical Demultiplexing

Fig 1. SFG-based all-optical demultiplexing concept

The associated wavelengths to the data and control signals, schematically shown in Fig. 1, are assigned to fulfil the conditions for SFG in the PPLN satisfying the relation:

$$\lambda_{SH} = \lambda_s + \lambda_c$$

where s and c denote the data and control signals, respectively, and λ_{SH} the wavelength of frequency-doubling of the PPLN. Normally, λ_{SH} is also called the quasi-phase matching (QPM) wavelength. The wavelengths ranges satisfying this relationship are within the transparency range of the material 0.35 to \leq 4µm. Both signals are coupled into the PPLN and by tuning an optical delay in the control signal path, a particular channel is selected. The interaction area between the signals is down-converted to the visible region and corresponds to the extracted channel. The extracted signal in question presents no intra–channel interference due to the existing separation between pulses that corresponds to the period of the extraction rate. Inter-channel
interference is avoided by controlling the control pulse width. Finally, the extracted channels are detected by a photoreceiver for bit-error-rate (BER) performance evaluation.

Experimental Procedure

The experimental setup is depicted in Fig. 2. Optical pulses generated by a fibre mode-locked laser (FMLL) with a pulse width of 1.5 ps at 1550 nm and 40 GHz repetition rate are amplitude modulated to form a 2^7-1 return-to-zero on-off keying (RZ-OOK) PRBS stream. The pulses are compressed to 1 ps, tuned to 1559 nm and multiplexed by a fibre-based interleaver to form the 320 Gbit/s OTDM signal. The control signal has a pulsewidth of 2.5 ps at 1541 nm and 10 GHz repetition rate. In order to resolve the data signal in the optical demultiplexer, the pulses were compressed to 1.2 ps and tuned to 1533.6 nm. The timing jitter of the control signal after pulse compression obtained from phase-noise measurements is 45 fs. The wavelengths of the data and control signals which satisfy SFG are coupled into the PPLN with the corresponding average power of 11 and 10 dBm. In order to select a particular channel of the OTDM signal, a tunable optical-delay line is placed in the path of the control signal. At the output of the PPLN, the extracted channels down-converted to 773.1 nm are detected by a 12 GHz GaAs/PIN photoreceiver for BER performance evaluation.

The PPLN consists of a temperature-controlled and pigtailed 30-mm waveguide whose QPM at 52°C peaks at 1546.2 nm ($\lambda_{SH}=773.1$ nm) with a normalized efficiency $\eta_{norm}=214%W^{-1}$. It holds a GVM of 2.5 fs/mm between signals in the C-band and 0.3 ps/mm between SH and C-band signals.

Experimental Results and Discussion

The spectra of the signals entering into the PPLN are shown in Fig. 3a. The spectrum of the control pulse (red trace) together with the spectrum of the 320 Gbit/s OTDM signal (black trace) are placed in a conjugate-sided fashion with respect to the QPM wavelength.

The corresponding wavelengths were assigned not only to satisfy the SFG process but also to reduce the amount of noise at the QPM wavelength. When the SFG process is satisfied, the extracted channel is selected by tuning the optical delay. This implies an overlapping or cross-correlation between the pulses of the control and data signals, down-
converting the target channel to λ_{SH} whose width is broadened from 1.2 ps to 10.2 ps (1.2 ps + 0.3 ps/mm x 30 mm) due to the GVM. Since every 100 ps (the period of the control signal) a pulse is extracted, no intra-channel crosstalk is revealed. Fig. 3b shows the optical spectrum and time-domain trace of a 10 Gbit/s extracted channel. The width of the pulses is due to the combined effect of the impulse response of the photoreceiver and the oscilloscope. If the control pulses are not adequately compressed (as defined by the data bit-slot), inter-channel crosstalk will be experienced.

Since every 100 ps (the period of the control signal) a pulse is extracted, no intra-channel crosstalk is revealed. Fig. 3b shows the optical spectrum and time-domain trace of a 10 Gbit/s extracted channel. The width of the pulses is due to the combined effect of the impulse response of the photoreceiver and the oscilloscope. If the control pulses are not adequately compressed (as defined by the data bit-slot), inter-channel crosstalk will be experienced.

Fig. 4 BER curves of the PPLN-based all-optical demultiplexer. Circles: single 10 Gbit/s channel; Squares: 320-to-10 Gbit/s demultiplexing—best case; half-filled squares: 320-to-10 Gbit/s demultiplexing—worst case; triangles: 160-to-10 Gbit/s – best case; half-filled triangles: 160-to-10 Gbit/s – worst case.

The BER performance of the PPLN-based demultiplexer is shown in Fig. 4. The circles illustrate error-free operation of a 10 Gbit/s single channel at 850 nm used as reference. The full and half-filled squares represent the best and worst case 320-to-10 Gbit/s demultiplexing performance. As a reference, results from 160-to-10 Gbit/s demultiplexing operation are represented in Fig. 4. Error-free operation is achieved on all the demultiplexed channels with an average received optical power of -16.4 dBm. This value corresponds to an average power penalty of 2 dB with respect to the reference. This penalty is due to a reduced OSNR and to the responsivity of the photoreceiver which is optimised for 850 nm. Fig. 5 shows no patterning effects when the PRBS sequence is varied from 2^7-1 to 2^{15}-1.

Fig. 4 BER curves of the PPLN-based all-optical demultiplexer. Circles: single 10 Gbit/s channel; Squares: 320-to-10 Gbit/s demultiplexing—best case; half-filled squares: 320-to-10 Gbit/s demultiplexing—worst case; triangles: 160-to-10 Gbit/s – best case; half-filled triangles: 160-to-10 Gbit/s – worst case.

The BER performance of the PPLN-based demultiplexer is shown in Fig. 4. The circles illustrate error-free operation of a 10 Gbit/s single channel at 850 nm used as reference. The full and half-filled squares represent the best and worst case 320-to-10 Gbit/s demultiplexing performance. As a reference, results from 160-to-10 Gbit/s demultiplexing operation are represented in Fig. 4. Error-free operation is achieved on all the demultiplexed channels with an average received optical power of -16.4 dBm. This value corresponds to an average power penalty of 2 dB with respect to the reference. This penalty is due to a reduced OSNR and to the responsivity of the photoreceiver which is optimised for 850 nm. Fig. 5 shows no patterning effects when the PRBS sequence is varied from 2^7-1 to 2^{15}-1.

Fig. 5 Eye-diagram of the extracted channel: (a) 2^7-1; (b) 2^{15}-1 PRBS sequence

Conclusions

This paper describes a successful ultrafast all-optical demultiplexer for 320-to-10 Gbit/s employing a periodically-poled lithium niobate waveguide. By exploiting the sum-frequency generation nonlinear process, it is demonstrated that the limitation on the bit-rate that can be demultiplexed is only determined by the pulsewidth of the control pulse. Error-free operation is achieved for all the channels attaining an average power penalty of 2 dB. The results here outlined, demonstrate the potential offered by PPLN waveguides in ultra-high speed optical signal processing.

Acknowledgements

This work is supported by the European Commission project ICT-BOOM (www.ict-boom.eu) within the 7th Framework Program (FP7), Information and Communications Technologies (ICT). The work of A. Albores-Mejia is supported by CONACyT, Mexico

References