What is the in vivo axial strain of a porcine coronary artery?

van den Broek, C.N.; van Tuijl, S.; Rutten, M.C.M.; van de Vosse, F.N.

Published in:
Proceedings of the 16th European Society of Biomechanics Conference (ESB 2008) 6-9 July 2004, Lucerne, Switzerland

Published: 01/01/2008

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 10. Dec. 2018
WHAT IS THE IN VIVO AXIAL STRAIN OF A PORCINE CORONARY ARTERY?

Chantal v.d. Broek (1), Sjoerd v. Tuijl (2), Marcel Rutten (1), Frans v.d. Vosse (1)

1. TU/e, The Netherlands; 2. HemoLab BV, The Netherlands

Introduction
Knowledge of mechanical properties of living arteries is important to understand vascular function during health and disease. An effective way to study the behavior of living tissue is organ culture. In arterial culture the artery should be loaded at in vivo levels to maintain the artery’s viability. The in vivo axial strain of coronary arteries, however, is unknown. Therefore, the aim of this study is to determine the physiological axial strain of the porcine left anterior descending coronary artery (LAD). Based on Weizsäcker (1983) and Schulze-Bauer (2003) it was hypothesized that: The in vivo axial strain of an artery is the strain at which the axial force (F_{ax}) is relatively insensitive to changes in pressure (P). This “physiological” strain (fig.1, right, red line) was determined in an organ culture model. To test the hypothesis an isolated beating heart experiment, in which a porcine heart is loaded physiologically, was performed. Due to the pumping of the heart, a cyclic axial strain is induced to the coronaries.

Material and methods
The culture model experiment protocol:
- A segment of a porcine LAD was excised.
- The length was measured of (fig. 1):
 - The segment still fixed to the heart (l_{heart})
 - The segment at its ex vivo length (l_{ev})
- The segment was loaded with a pulsatile pressure in the culture model
- The segment length was increased until the F_{ax} change during a P cycle was minimized (l_{phys})

Results
- There was a small spread in the determined axial strains, i.e. λ_{heart} and λ_{phys}, in the culture model experiment ($n=12$, fig.2a).
- The following axial strains have been determined in the isolated beating heart experiment (preliminary results $\rightarrow n=1$, fig. 2b):
 - $\lambda_{heart} = 1.2$
 - $\lambda_{phys,min} = 1.3$
 - $\lambda_{phys,max} = 1.38$
- The “physiological” stretch derived from the culture model experiment equals the maximum stretch of an artery during a heart beat.

Isolated porcine heart experiment
The in vivo axial strain was measured on an isolated beating porcine heart model (PhysioHeart, HemoLab). Markers were positioned in parallel to the LAD. By high speed camera recording of the markers during a heart beat, the ex vivo strain amplitude was measured. At the end the marked segment was dissected to determine l_{heart} and l_{ev}.

Conclusion
The average “physiological” stretch of the porcine LAD is found to be 1.38, which is equal to the maximum stretch during a heartbeat in the isolated heart experiment. More isolated heart experiments need to be conducted to be conclusive on whether the in vivo axial strain is indeed the strain at which the axial force is relatively insensitive to changes in pressure.

References