Dependence of the transition from Townsend to glow discharge on secondary emission

Citation for published version (APA):

DOI:
10.1103/PhysRevE.70.017401

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.tue.nl/index.php?id=71870

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dependence of the transition from Townsend to glow discharge on secondary emission

Yu. P. Raizer,1 Ute Ebert,2,3 and D. D. Šijačić2

1Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
2CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
3Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 25 February 2004; published 21 July 2004)

In a recent paper, Šijačić and Ebert [Phys. Rev. E. 66, 006410 (2002)] systematically studied the transition from Townsend to glow discharge, referring to older work by von Engel and M. Steenbeck [Elektrische Gasentladungen. Ihre Physik und Technik (Springer, Berlin 1934), Vol. II] up to Raizer [Gas Discharge Physics (Springer, Berlin, 1991)]. Šijačić and Ebert stated that this transition strongly depends on secondary emission γ from the cathode. We show here that the earlier results of von Engel and Raizer on the small current expansion about the Townsend limit actually are the limit of small γ of the Šijačić and Ebert expression, and that for larger γ the old and the Šijačić and Ebert new results vary by no more than a factor of 2. We discuss the γ dependence of the transition, which is rather strong for short gaps.

DOI: 10.1103/PhysRevE.70.017401 PACS number(s): 52.80.-s, 51.50.+v

\[\bar{\alpha}(|E|) = \alpha_0 e^{-|E|/\beta}. \] (4)

(In [1], the generalized case \(\bar{\alpha}(|E|) = \alpha_0 \exp(-E_0/|E|) \) was treated.) Boundary conditions at the anode \(x=0 \) and for secondary emission at the cathode \(x=d \) are

\[J_e(0) = 0, \quad |J_x(d)| = \gamma |J_x(d)|. \] (5)

The discharge is characterized by the potential \(U \) and total electric current \(J \), as

\[U = \int_0^d dx \, E(x), \quad J = e(n_+\mu_+ + n_\mu)E. \] (6)

It is useful to introduce dimensionless voltage and current, as

\[u = \frac{U}{E_0\alpha_0}, \quad \tilde{J} = \frac{J}{e_0\alpha_0E_0} \mu \tilde{E}_0, \] (7)

where \(\tilde{J}/\mu \) with the definition of \(j \) from [1]. It should be noted that only bulk gas parameters have been used as units; therefore, the dimensionless \(u \) and \(\tilde{J} \) are independent of \(\gamma \).

Further dimensional analysis yields that the current-voltage characteristics \(u = u(\tilde{J}) \) can depend on three parameters only: namely, on the dimensionless gap length \(L = \alpha_0 d \), on the coefficient \(\gamma \) of secondary emission, and on the mobility ratio \(\mu = \mu_+/\mu_\mu \). In practice, the dependence on the small parameter \(\mu \) is almost negligibly weak [1]; therefore, \(u = u(\tilde{J}, L, \gamma) \). Here, the dimensionless gap length \(L \) is related to \(pd \) through \(L = Apd \) as long as the coefficient \(\alpha_0 \) is related to pressure as \(\alpha_0 = Ap \).

How strongly does the characteristics \(u = u(\tilde{J}, L, \gamma) \) depend on \(\gamma \)? In [1], Šijačić and Ebert (SE) calculated the whole Townsend-to-glow regime numerically and derived, by expanding systematically in powers of current \(\tilde{J} \) about the Townsend limit, that

\[u = u_T - A_{SE} \tilde{J}^2 + O(\tilde{J}^3), \] (8)

\[\bar{\alpha}(|E|) = \alpha_0 e^{-|E|/\beta}. \] (4)
The coefficient of Fig. 1 of \(\left[\right] \) is reproduced as Eq. (50) in [1] for \(F(\gamma, \mu) \) which was corrected, namely, the missing factor \(1/(8\pi) \) in (8.8) is substituted by \(\varepsilon_0/2 \) in (16), since we here write the Poisson equation (2) in MKS units rather than in Gaussian units; cf. (8.6) in [2].

In (8.6), another small current expansion was derived from (1)–(3), assuming \(n_s \approx n_e \) and \(n_s(x) = \text{const} \). This approximation was criticized in [1], since it is in contradiction with the boundary condition (5); however, for very small \(\gamma \), it is a good approximation in a large part of the gap. The resulting equations (8.8) and (8.10) from [2] read in the notation of the present paper

\[
U = U_T = \frac{U_T - 1}{48} \frac{2E_T}{J_L^2} \left(\frac{J}{J_L} \right)^2,
\]

(15)

\[
J_L = \frac{\varepsilon_0 \mu L^2}{2 d^3}.
\]

(16)

(Here, a misprint in [2] was corrected, namely, the missing factor \(U_T \) in the coefficient of \(J^2 \) in (15), is now included. Furthermore, the factor \(1/(8\pi) \) in (8.8) is substituted by \(\varepsilon_0/2 \) in (16), since we here write the Poisson equation (2) in MKS units rather than in Gaussian units; cf. (8.6) in [2].)

In (15), the physical current density \(J \) is compared to \(J_L \). \(J_L \) is the current density at which deviations from the Townsend limit through space charges start to occur; it explicitly depends on \(\gamma \) through \(U_T \) (12).

Comparison of the results of Šijačić and Ebert (8) and of von Engel and Raizer (ER) (15) show that the coefficients \(A_{SE, ER} \) in the expansion (8) are related as

\[
A_{SE} = A_{ER} \frac{12 \frac{F(\gamma, \mu)}{L^3}}{L^3}, \quad A_{ER} = \frac{1 - 2E_T}{2E_T} \frac{L^3}{12 E_T^3}.
\]

(17)

The coefficients \(A_{SE} \) and \(A_{ER} \) depend in the same way on \(L \), and they are essentially independent of \(\mu \) for realistic values of \(\mu \). Therefore, the ratio \(A_{SE}/A_{ER} \) depends only on \(\gamma \) as shown in Fig. 1. For \(\gamma \to 0 \), the ratio tends to unity. For a
large range of γ values, the deviation is not too large, approaching a factor 0.44 for $\gamma=10^{-1}$.

Figure 2 shows that the factor A_{SE} indeed strongly depends on γ for the given L.

The strong dependence of A_{SE} or A_{ER} on γ for a given short gap length L means that we can obtain both negative and positive differential resistance dU/dJ close to the Townsend limit for the same gap length. Therefore, the choice of γ is important since it can change the differential conductivity and therefore the stability of a Townsend discharge in a short gap.

ACKNOWLEDGMENTS

Y.R. acknowledges the hospitality of CWI Amsterdam and D.S. a Ph.D. grant of the Dutch physics funding agency FOM.