Gabor representation and Wigner distribution of signals

Janssen, A.J.E.M.

Published in:

Published: 01/01/1984

Citation for published version (APA):
GABOR REPRESENTATION AND WIGNER DISTRIBUTION OF SIGNALS

A.J.E.M. Janssen
Philips Research Laboratories
P.O. Box 80.000
5600 JA Eindhoven, The Netherlands

ABSTRACT
We compare Gabor representation and the Wigner distribution on their merits for the time-frequency description of signals.

INTRODUCTION
We consider 2 methods of describing time signals in time and frequency simultaneously, viz. the Gabor representation method and the Wigner distribution method. In the first method, one develops a signal \(f(t) \) as a series

\[
\psi(t) = \sum_{n,m} c_{nm} \psi_{nm}(t),
\]

(1)

with

\[
c_{nm}(f) = \exp \left(i \alpha \beta - i \pi mn \right) g(t-n\alpha),
\]

(2)

where \(\alpha > 0, \beta > 0 \) and \(g(t) \) is a fixed time function with unit energy. Gabor [1] considered the case \(\alpha \beta = 1 \), \(g(t) = 2^{1/4} \exp(-\pi t^2) \), so that the "elementary signals" \(\psi_{nm} \) are concentrated around the points \((n\alpha, m\beta) \) in the time-frequency plane. In Gabor's terminology, the time-frequency plane is partitioned into logons, rectangles of unit area, and the signal \(f \) is completely described by the data \(c_{nm}(f) \) assigned to these logons. In the Wigner distribution method, the Wigner distribution of \(f \) is defined as

\[
\mathcal{W}_f(t,\omega) = \int_{-\infty}^{\infty} e^{-2\pi i \xi \omega} \psi(t) \overline{\psi(t+\xi)} d\xi;
\]

(3)

this \(\mathcal{W}_f(t,\omega) \) is to be interpreted as a kind of energy density function of \(f \) in time and frequency. In this paper we are interested in how the 2 modes of description are related, how they compare for certain test signals, which one of the 2 has the best resolution, and so on. Due to lack of space we shall dispense with all proofs, although most facts can be easily established from [2], [3] and [4].

GABOR EXPANSIONS
Gabor series, as in (1), were suggested by D. Gabor for the purpose of efficient signal transmission as early as 1946, but the questions about existence and uniqueness of the \(c_{nm}(f) \)'s, as well as convergence of the series have been settled only rather recently. See [2-9]. These investigations have revealed that, at least in Gabor's case \(g(t) = 2^{1/4} \exp(-\pi t^2) \), one has to restrict to the \(\alpha \beta = 1 \) case: if \(\alpha \beta > 1 \), one can find well-behaved signals \(f \) that cannot be represented as a Gabor series, and if \(\alpha \beta < 1 \), there are many double sequences \((c_{nm}) \) \(0 \) such that \(c_{nm} \to 0 \) rapidly as \(n^2 + m^2 \to \infty \) while \(\sum_{nm} c_{nm} \psi_{nm}(t) \not\equiv 0 \).

The case \(\alpha \beta = 1 \) is not without problems either: while it is true, in Gabor's case, that \((c_{nm}) \equiv 0 \) whenever \(c_{nm} \to 0 \) \((n^2 + m^2 \to \infty) \) and \(\sum_{nm} c_{nm} \psi_{nm}(t) \equiv 0 \), it also holds that \(\sum_{nm} c_{nm} \psi_{nm}(t) \equiv 0 \) (see [2, 6]). This shows that the \(G_n \)'s are rather close to being linearly dependent, so that we may expect problems in determining the Gabor coefficients.

We shall consider from now on the case \(\alpha = \beta = 1 \), and we allow \(g \) to be an arbitrary time function of unit energy. The expansion coefficients \(c_{nm}(f) \) in (1) can be found as follows (see [4], [5], [6]). For any signal \(h(t) \), define the Zak transform \((Th)(z,\omega) \) by

\[
(Th)(z,\omega) = \sum_{n,m} h(nz+\omega) e^{-2\pi i \xi \omega} dz d\omega.
\]

(4)

It can then be shown that the \(c_{nm}(f) \)'s are, at least formally, the Fourier coefficients of the function \(Tf/Tg \). That is,

\[
c_{nm}(f) = \delta_{mn} \int_{-\infty}^{\infty} \mathcal{W}_f(t-\omega) e^{-2\pi i \xi \omega} d\omega.
\]

(5)

Among the many properties of the Zak transform, the following ones are especially noteworthy:
(a) \(T \) is one-to-one and onto from \(L^2(\mathbb{R}) \) into \(L^2([0,1]) \),

\[
\int_{-\infty}^{\infty} \left| \mathcal{W}_f(t,\omega) \right|^2 d\omega = \int_{-\infty}^{\infty} \left| h(t) \right|^2 dt,
\]

(b) \(T^* = T^{-1} \) and \(T \) is bounded on \(L^2 \).
The Wigner distribution $w_{\psi \circ \varphi}$ will, in general, have significant contributions everywhere in the time-frequency plane. This claim can be proved, for instance, when g is smooth and rapidly decaying so that T_g has zeros to the extent that $1/T_g$ is not square integrable over the unit square. It can be shown that

$$\langle c_{nm}, g \rangle \sim \frac{1}{\sqrt{m^2 + n^2}},$$

and, due to the periodicity relations (integer n and m)

$$w_{\psi \circ \varphi}((x, y) + (m, n)) = e^{2\pi i ny/2}w_{\psi \circ \varphi}(x, y),$$

we must conclude that $w_{\psi \circ \varphi}$ is singular at all points $(x, y) = (n/2, m/2)$ with integer n and m. It can furthermore be shown that

$$\sum_{n,m} |w_{\psi \circ \varphi}(x+n/2, y+m/2)|^2 = \infty$$

for all $x \in \mathbb{R}, y \in \mathbb{R}$. Hence, in addition to having many singularities, $w_{\psi \circ \varphi}$ has poor decay properties. It thus seems that the c_{nm} have poor resolution properties compared to $w_{f \circ f}$.

EXAMPLES

1. Consider the case $g(t) = 1$ or 0 according as $t \in [0, 1]$ or not. Now $$(T_g)(z, w) = 1$$

for any signal f, and we develop f into a Fourier series to obtain the c_{nm}.

A different method that can be used to compute the c_{nm}'s works as follows. Define, whenever this makes sense, the function g_0 by

$$g_0(z) = \int_0^1 \frac{d\omega}{(T_g)'(z, \omega)}, \quad (z \in [0, 1]).$$

It can then be shown that

$$(T_g)'(z, \omega) = \frac{1}{\sqrt{2\pi}}(z, \omega),$$

and the expansion coefficients can be obtained from g_0 and f as

$$c_{nm}(f) = (i)^{nm} \int_0^1 \frac{d\omega}{(T_g)'(z, \omega)}, \quad (z \in [0, 1]).$$

In certain cases, (8) is more convenient to use than (5), especially when g_0 can be evaluated explicitly.

GABOR COEFFICIENTS AND WIGNER DISTRIBUTION

Formula (8) can be used to express $|c_{nm}(f)|^2$ in terms of the Wigner distribution of f. Indeed, it follows from the well-known formula of Moyal and elementary properties of the Wigner distribution that

$$|c_{nm}(f)|^2 = \int_0^1 \int_0^1 w_{f \circ f}(z, \omega)w_{g_0 \circ g_0}(z-n, \omega-m) dz d\omega.$$

This shows that $c_{nm}(f)$ can be computed by convolving the Fourier coefficients of f and $1/(T_g)'(z, \omega)$.

The Wigner distribution $w_{\psi \circ \varphi}$ will, in general, have significant contributions everywhere in the time-frequency plane. This claim can be proved, for instance, when g is smooth and rapidly decaying so that T_g has zeros to the extent that $1/T_g$ is not square integrable over the unit square. It can be shown that

$$w_{\psi \circ \varphi}((x, y) + (m, n)) = e^{2\pi i ny/2}w_{\psi \circ \varphi}(x, y),$$

and, due to the periodicity relations (integer n and m)

$$w_{\psi \circ \varphi}((x, y) + (m, n)) = e^{2\pi i ny/2}w_{\psi \circ \varphi}(x, y),$$

we must conclude that $w_{\psi \circ \varphi}$ is singular at all points $(x, y) = (n/2, m/2)$ with integer n and m. It can furthermore be shown that

$$\sum_{n,m} |w_{\psi \circ \varphi}(x+n/2, y+m/2)|^2 = \infty$$

for all $x \in \mathbb{R}, y \in \mathbb{R}$. Hence, in addition to having many singularities, $w_{\psi \circ \varphi}$ has poor decay properties. It thus seems that the c_{nm} have poor resolution properties compared to $w_{f \circ f}$.

EXAMPLES

1. Consider the case $g(t) = 1$ or 0 according as $t \in [0, 1]$ or not. Now

$$(T_g)(z, w) = 1$$

for any signal f, and we develop f into a Fourier series to obtain the c_{nm}.

A different method that can be used to compute the c_{nm}'s works as follows. Define, whenever this makes sense, the function g_0 by

$$g_0(z) = \int_0^1 \frac{d\omega}{(T_g)'(z, \omega)}, \quad (z \in [0, 1]).$$

It can then be shown that

$$(T_g)'(z, \omega) = \frac{1}{\sqrt{2\pi}}(z, \omega),$$

and the expansion coefficients can be obtained from g_0 and f as

$$c_{nm}(f) = (i)^{nm} \int_0^1 \frac{d\omega}{(T_g)'(z, \omega)}, \quad (z \in [0, 1]).$$

In certain cases, (8) is more convenient to use than (5), especially when g_0 can be evaluated explicitly.

GABOR COEFFICIENTS AND WIGNER DISTRIBUTION

Formula (8) can be used to express $|c_{nm}(f)|^2$ in terms of the Wigner distribution of f. Indeed, it follows from the well-known formula of Moyal and elementary properties of the Wigner distribution that

$$|c_{nm}(f)|^2 = \int_0^1 \int_0^1 w_{f \circ f}(z, \omega)w_{g_0 \circ g_0}(z-n, \omega-m) dz d\omega.$$

This shows that $c_{nm}(f)$ can be computed by convolving the Fourier coefficients of f and $1/(T_g)'(z, \omega)$.
with \([a]\) largest integer \(\leq a\).

3. We consider in the remainder of this section the Gabor case \(g(t) = 2^{1/4}\exp(-\pi t^2)\). It turns out that

\[
(Tg, \chi, \omega) = 2^n \exp(-\pi t^2) \Theta_3(\omega + it),
\]

where \(\Theta_3\) is the third theta function \(\sum \exp(-\pi n^2 \zeta^2)\).

Now \(Tg\) has exactly one zero in the unit square, viz. at \((1/2, 1/2)\). It can furthermore be shown that the function \(g_0\) of (6), (7) and (8) is given by

\[
g_0(t) = \delta \sum_{n=\pm 1/2} \exp(-\pi (n-1/2)^2 t^2 + n+i\omega t),
\]

where \(\delta\) is a constant. This \(g_0\) is bounded, but not square integrable. And the Fourier coefficients of the function \(1/(Tg)(0,0)\) as it occurs in (15) are \(g_0(k)\). Note that \(g_0(k)\) decays exponentially when \(|k| \to \infty\).

The Gabor coefficients can be calculated explicitly for certain functions. We have e.g. for the chirp \(f(t) = \exp(\pi t^2)\)

\[
c_m(f) = c_m = a_m \delta_{m,n} = \sum_{k=0}^{\infty} \exp(-\pi n^2 k^2),
\]

and \(a_m\) is of the form \(d(a + bc^2n)c^n\) with \(a, b, d\) constants and \(c = \exp(-\pi/2)\). Similar, but more complicated formulas, can be given for \(f(t) = \exp(\pi t^2)\), \(\alpha = \pi/\omega\) rational. For the case that \(\alpha\) is irrational we were unable to find expressions for the \(C_{nm}\)'s. Note that \(W_{f,f}(t,\omega) = \delta(\omega-\alpha t)\) for \(f(t) = \exp(\pi t^2)\). Hence, here the Wigner distribution is more convenient.

To show the slow decay properties of \(W_{g_0^*g_0}\) we note that it can be shown that

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-\pi (x^2 + y^2)) \frac{W_{g_0^*g_0}(x,y)}{x^2 + y^2} \text{d}x \text{d}y = \frac{1}{\pi},
\]

where \(P\) is periodic in its 2 variables, non-negative, has zeros at the lattice points \((n,m)\) and satisfies \(P(x,y) = P(y,x)\). Finally, it can be shown that \(W_{g_0^*g_0}\) has logarithmic singularities at all points \((n/2, m/2)\).

Below we display \(g_0\) as a function of \(t\). This figure has been borrowed from M.J. Bastiaans' paper [9].

CONCLUSIONS

We draw the following conclusions from the previous sections. The idea of describing an arbitrary signal \(f\) by means of a double sequence \((c_{nm}(f))\) that gives an indication of the energy distribution of \(f\) over time and frequency is attractive from a theoretical point of view; there are several practical drawbacks, though. Such a description can be effectuated by expanding \(f\) as a series \(\sum_{nm} c_{nm}(f)G_{nm}\), where \(G_{nm}\) are time-frequency translates (see (2)) of a fixed function \(g\).

Expressions for the \(c_{nm}(f)\)'s are given by formulas (5) and (8). It can be observed that, in general, \(\sum_{nm} |c_{nm}(f)|^2 = \infty\), even when both \(f\) and \(g\) are well-behaved functions of finite energy. Furthermore, the calculation of the \(c_{nm}(f)\)'s will be cumbersome in general, since both the double integral in (5) and the integral over an infinite interval in (8) have poor convergence properties. It appears that the Wigner distribution behaves better in this respect: the speed of convergence of (3) is intrinsically determined by the signal \(f\) itself. Of course, as opposed to the \(c_{nm}(f)\)'s, the Wigner distribution has to be calculated for 2 continuous variables. With respect to resolution it can be said that, usually, the Wigner method gives better results than does the Gabor method. This is apparent from the formulas (9-12), showing that \(c_{nm}(f)\) can be obtained from the convolution of the Wigner distribution of \(f\) with a function of poor decay properties. Since neither \(W_{f,f}\) nor \(W_{g_0^*g_0}\) is positive everywhere, formula (9) is slightly (and sometimes quite) misleading, though, because of the occurrence of cancellations in the double integral. The examples show that analytical expressions for the coefficients \(c_{nm}(f)\) may be quite complicated or hard to derive, even for "easy" signals like periodic functions and chirps. It may also happen that 2 signals have convenient Gabor representations relative to 2 different lattices \((n_0, m_0)\) while there is no \(c\) that works well for both signals at the same time. Our general conclusion is that the Gabor method has several interesting theoretical aspects, but that for practical purposes the Wigner method is likely to be more useful.

REFERENCES

Fig. 1. The function $g_0(t)$ corresponding to the choice $g(t) = 2^{1/4} \exp(-\pi t^2)$.

