Quality adaptive trained filters for compression artifacts removal

Citation for published version (APA):

Document status and date:
Published: 01/01/2008

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Sep. 2023
A compression artifacts removal algorithm that is adaptive to the artifact visibility level of the input video signal is proposed. The artifact visibility is determined per frame by the ratio of the accumulated gradient on the block edges to that of the remaining area. The filtering of each video frame is optimized using a least mean square mechanism which trains on pairs of target images and decompressed images of similar quality as the input frame. Experimental results show that the proposed approach outperforms several recent methods in coding artifact reduction.

Index Terms— Quality metric, adaptive filters, compression artifacts removal, least mean square optimization

1. **INTRODUCTION**

In the last decade, digital has replaced analogue transmission for television, digital storage on DVDs replaced analogue storage on VCRs, while streaming over the Internet introduced video on the PC. Digitalization, without further measures, greatly expands the required storage capacity and transmission bandwidths. All this has become possible, therefore, only because of the progress made on video compression, or digital coding. Coding standards have evolved from JPEG to MPEG-2/4 to the latest H.264/AVC. These block transform based codecs divide the image or video frame into non-overlapping blocks (usually with the size of 8 x 8 pixels), and apply discrete cosine transform (DCT) on them. The DCT coefficients of neighboring blocks are thus quantized independently. At high or medium compression rates, the coarse quantization will result in various noticeable coding artifacts, such as blocking, ringing and mosquito artifacts. Among the coding artifacts, blockiness which appears as discontinuities along block boundaries is the most annoying. Therefore, an in-loop deblocking filter is specified for H.264/AVC to reduce blocking artifacts using coding parameters inside the encoder. However, JPEG compressed images and MPEG-2/4 compressed videos will remain ubiquitous, which makes post-processing aimed at the elimination of coding artifacts still a critical and indispensable solution.

Most coding artifact reduction techniques based on post-processing, e.g. [1, 2], are designed according to heuristic tuning and testing, which takes a lot of time and is not always effective. Recently, classification-based trained filters (TF) have been proposed for optimally removing digital coding artifacts [3, 4]. The local image characteristics can be classified using local structure or activity information. For each class, the optimized filter coefficients are obtained by an off-line training process, which trains on the combination of targeted images and the degraded versions thereof that act as source. The methods introduced in [3, 4] produce promising results, when the quality of the test sequence is similar to that of the source sequences used during training. It is because a fixed level of compression is adopted for degrading the target images. We propose to train the algorithm on a range of compression levels and to select the most suitable set of filter coefficients for the test sequence. To do that, a quality (or blockiness) metric is required to indicate the quality level of the test sequence.

We introduce the quality adaptive trained filters in Section 2. The quality/blockiness metric, which represents the artifact visibility of an image, is presented in Section 3. The algorithm is evaluated objectively in comparison to other artifact reduction approaches in Section 4. In Section 5, we conclude our paper.

2. **QUALITY ADAPTIVE TRAINED FILTERS**

In this section, trained filters using a quality metric will be described. The algorithm is composed of two parts: the off-line training process and the run-time filtering process. Fig. 1 shows the proposed training process. Uncompressed images are used as target images. The target images are degraded with different degradation levels. For coding artifacts reduction, the degradation is compression. For each degradation level, each pixel in the degraded images is then classified on that pixel’s neighborhood using a classification method. The classification method we use here is Adaptive Dynamic Range Coding (ADRC), which represents the structure information of a local region, coupled with a
complexity measure. The ADRC code of each pixel \(x_i \) in an observation aperture is defined as:

\[
ADRC(x_i) = 0, \text{ if } V(x_i) \leq V_{av}; 1, \text{ otherwise}
\]

where \(V(x_i) \) is the value of pixel \(x_i \), and \(V_{av} \) is the average of all the pixel values in the aperture. The ADRC code of an image kernel is the concatenation of the ADRC codes of all the pixels in that kernel. The complexity measure we adopt is standard deviation, which performs the best for coding artifact reduction in the performance evaluation experiments in [5]. All the pixels and their neighborhoods belonging to a specific class and their corresponding pixels in the target images are accumulated, and the optimal coefficients per class are obtained by making the Mean Square Error (MSE) minimized statistically.

In the following, we describe the Least Mean Square (LMS) optimization for a certain degradation level. Let \(F_{D,c}, F_{R,c} \) be the apertures of the degraded images and the target images for a particular class \(c \), respectively. Then the filtered pixel \(F_{F,c} \) can be obtained by the desired optimal coefficients as follows:

\[
F_{F,c} = \sum_{j=1}^{n} w_c(i)F_{D,c}(i,j)
\]

(2)

where \(w_c(i), i \in [1..n] \) are the desired coefficients, and \(n \) is the number of pixels in the aperture.

The summed square error between the filtered pixels and the target pixels is:

\[
e^2 = \sum_{j=1}^{N_c} (F_{R,c} - F_{F,c})^2
\]

\[
= \sum_{j=1}^{N_c} [F_{R,c}(j) - \sum_{j=1}^{n} w_c(i)F_{D,c}(i,j)]^2
\]

(3)

where \(N_c \) represents the number of pixels belonging to class \(c \). To minimize \(e^2 \), the first derivative of \(e^2 \) to \(w_c(k), k \in [1..n] \) should be equal to zero.

\[
\frac{\partial e^2}{\partial w_c(k)} = \sum_{j=1}^{N_c} 2F_{D,c}(k,j)[F_{R,c}(j) - \sum_{j=1}^{n} w_c(i)F_{D,c}(i,j)] = 0
\]

(4)

By solving the above equation using Gaussian elimination, we will get the optimal coefficients as follows:

\[
W = X^{-1}Y
\]

(5)

where

\[
W = [w_c(1), w_c(2), \ldots, w_c(n)]^T
\]

The LMS optimized coefficients for each class are then stored in a look-up table (LUT) for future use. For different degradation levels, several LUTs are obtained after training. Fig. 2 shows the filtering process of the algorithm. The quality of each input image is first evaluated using a quality metric. Then, the most suitable LUT is selected for that image according to its quality score. The optimized coefficients are retrieved from that LUT to filter the image based on pixel classification.

3. ARTIFACT VISIBILITY METRIC

For an input video frame, a quality metric is required to indicate which LUT is the most appropriate. For compression artifacts removal, an artifact strength measure can be used as the quality metric. Since blocking artifacts are the most noticeable, a blockiness metric, introduced in [2], is adopted to measure the artifact level of a video frame.

The visual strength of a block edge is predominantly affected by the magnitude of the edge gradient and the spatial activity in the direct vicinity of the block border. In other words, the visibility of a block edge is determined by the contrast between the local gradient and the average gradient of the adjacent pixels. Based on the principle that block discontinuities can be spotted as edges that stand out from the spatial activity in their vicinity, a simple and
efficient algorithm for detection of the grid position and estimation of a block edge visibility is applied.

In the following, we discuss the detection of vertical block edges, but identification of horizontal artifacts is accomplished in a similar fashion. Consider an image \(I \) with elements \(Y_{i,j} \), where \(i \) and \(j \) denote the pixel and line position, respectively. To express the similarity between the local gradient and its spatial neighbors, we introduce the normalized horizontal gradient \(D_{H,norm} \) as the ratio of the absolute gradient and the average gradient calculated over \(N \) adjacent pixels to the left and to the right:

\[
D_{H,norm}(i,j) = \frac{1}{2N} \sum_{n=-N}^{N} \frac{|Y_{i+n+1,j} - Y_{i+n,j}|}{N_{adj}}
\]

(6)

Because block edges occur at regular intervals in the horizontal or vertical direction, they can be further highlighted by summing \(D_{H,norm} \) over all image lines \(nl \):

\[
S_H(i) = \sum_{j=1}^{nl} D_{H,norm}(i,j)
\]

(7)

The presence of blocking artifacts will result in pronounced maxima in \(S_H \). The above procedure is illustrated for the image \(\text{branch} \) displayed in Fig. 3(a). Although blocking artifacts are difficult to identify in the original image, the periodic structure of the encoding grid is clearly revealed in the horizontal accumulator \(S_H \) shown in Fig. 3(b). The size and offset of the grid can be readily extracted from this signal by means of conventional histogram analysis of the peak locations.

The visual strength of the blocking artifacts can be determined by averaging \(S_H \) over the block edge and intermediate positions. The Blocking Strength (BS) for the whole frame is then defined as:

\[
BS = \frac{\overline{S_H(\text{block})}}{\overline{S_H(\text{non-block})}}
\]

(8)

where \(\overline{S_H(\text{block})} \) and \(\overline{S_H(\text{non-block})} \) denote the average value of \(S_H \) at the block edge and intermediate positions, respectively. The BS parameter is defined for horizontal and vertical directions.

The accuracy of the objective blockiness metric BS was assessed using the LIVE Image Quality Assessment Database [6], that consists of 169 JPEG encoded images and associated mean quality scores (MQS). Fig. 3(c) displays the relation between the objective metric BS and the subjective MQS. The Pearson correlation coefficient of these data amounts to 0.92.

In spite of the simplicity, the outlined approach provides an accurate prediction of the subjective quality for an encoded frame.

4. EXPERIMENTS AND EVALUATION

We carry out experiments using the proposed quality adaptive trained filters on MPEG coding artifact reduction in this section. MPEG-2 [http://www.chiariglione.org/mpeg/standards/mpeg-2/mpeg-2.htm] is used for compression, since sufficient coding artifacts appear when using this classical compression standard, which poses a challenge for artifacts reduction algorithms. A set of sequences with varied content, as depicted in Fig. 4, is employed for experiments. The sequences are compressed with different compression rates in the range of 1-4 Mbits/s to test the scalability of the algorithm on various qualities of the test sequences.

To evaluate the performance the proposed algorithm, Mean Square Error (MSE) between the original
uncompressed sequence and the outcome sequence after applying the proposed artifact reduction on the decompressed sequence is calculated. The MSE scores of different sequences with different compression rates are shown in Table 1. For benchmarking, we compare the MSE results with two state-of-the-art methods, proposed in [1, 7]. These two methods both rely on block grid locations and apply different filtering according to the complexity of the region. To show the superiority of quality metric controlled trained filters, the results of trained filters that optimize the coefficients using a mixture of compression rates during training are also shown. For the mixed trained filters, the filter coefficients selected for a particular image kernel are only dependent on pixel classification, i.e. no quality metric is used.

Table 1: MSE scores of different methods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle/1M</td>
<td>102.726</td>
<td>109.812</td>
<td>135.750</td>
<td>121.850</td>
</tr>
<tr>
<td>Bicycle/2M</td>
<td>71.416</td>
<td>74.116</td>
<td>95.884</td>
<td>88.879</td>
</tr>
<tr>
<td>Bicycle/3M</td>
<td>50.343</td>
<td>51.964</td>
<td>70.143</td>
<td>68.191</td>
</tr>
<tr>
<td>Bicycle/4M</td>
<td>38.466</td>
<td>39.400</td>
<td>55.352</td>
<td>56.063</td>
</tr>
<tr>
<td>Girlsea/1M</td>
<td>79.115</td>
<td>81.674</td>
<td>86.634</td>
<td>82.621</td>
</tr>
<tr>
<td>Girlsea/2M</td>
<td>41.141</td>
<td>41.813</td>
<td>44.898</td>
<td>41.369</td>
</tr>
<tr>
<td>Girlsea/3M</td>
<td>21.824</td>
<td>22.365</td>
<td>24.194</td>
<td>22.583</td>
</tr>
<tr>
<td>Soccer/1M</td>
<td>38.862</td>
<td>39.359</td>
<td>41.137</td>
<td>40.243</td>
</tr>
<tr>
<td>Soccer/2M</td>
<td>18.986</td>
<td>19.130</td>
<td>20.178</td>
<td>20.442</td>
</tr>
<tr>
<td>Soccer/3M</td>
<td>15.277</td>
<td>15.510</td>
<td>16.084</td>
<td>16.688</td>
</tr>
</tbody>
</table>

The comparison in Table 1 shows that the proposed quality adaptive trained filters outperform the other methods significantly for all the sequences with different qualities. For subjective evaluation, Fig. 5 shows the result of the proposed algorithm for the Bicycle sequence. It is easy to see that the proposed algorithm can suppress coding artifacts and preserve object details simultaneously.

5. CONCLUSION

A quality adaptive algorithm based on trained filters is proposed for coding artifacts reduction. During training, multiple LUTs are obtained for different degradation levels. The quality of an input video frame is designated by a blockiness visibility metric. A most suitable LUT for that quality level is then chosen for filtering the input frame.

The proposed approach is not dependent on block grid positions and removes various coding artifacts simultaneously. The training process is computationally intensive, because it has to train on a large variety of video data. Fortunately, it only needs to be done off-line and once. During the filtering process, optimized filter coefficients are retrieved from a LUT according to the quality level and pixel classification. The LUTs can be implemented on external Read Only Memory (ROM).

REFERENCES