Upper bound on the expected size of the intrinsic ball

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
UPPER BOUND ON THE EXPECTED SIZE OF THE INTRINSIC BALL

ARTĒM SAPOZHNIKOV
EURANDOM, PO. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: sapozhnikov@eurandom.tue.nl

Submitted June 08, 2010, accepted in final form June 11, 2010

AMS 2000 Subject classification: 60K35; 82B43
Keywords: Critical percolation; high-dimensional percolation; triangle condition; chemical distance; intrinsic ball.

Abstract
We give a short proof of Theorem 1.2(i) from [5]. We show that the expected size of the intrinsic ball of radius \(r \) is at most \(C r \) if the susceptibility exponent \(\gamma \) is at most 1. In particular, this result follows if the so-called triangle condition holds.

Let \(G = (V, E) \) be an infinite connected graph. We consider independent bond percolation on \(G \). For \(p \in [0, 1] \), each edge of \(G \) is open with probability \(p \) and closed with probability \(1 - p \) independently for distinct edges. The resulting product measure is denoted by \(P_p \). For two vertices \(x, y \in V \) and an integer \(n \), we write \(x \leftrightarrow y \) if there is an open path from \(x \) to \(y \), and we write \(x \leftrightarrow^\leq n y \) if there is an open path of at most \(n \) edges from \(x \) to \(y \). Let \(C(x) \) be the set of all \(y \in V \) such that \(x \leftrightarrow y \). For \(x \in V \), the intrinsic ball of radius \(n \) at \(x \) is the set \(B_I(x, n) \) of all \(y \in V \) such that \(x \leftrightarrow^\leq n y \). Let \(p_c = \inf\{ p : P_p(|C(x)| = \infty) > 0 \} \) be the critical percolation probability. Note that \(p_c \) does not depend on a particular choice of \(x \in V \), since \(G \) is a connected graph. For general background on Bernoulli percolation we refer the reader to [2].

In this note we give a short proof of Theorem 1.2(i) from [5]. Our proof is robust and does not require particular structure of the graph.

Theorem 1. Let \(x \in V \). If there exists a finite constant \(C_1 \) such that \(\mathbb{E}_p|C(x)| \leq C_1(p_c - p)^{-1} \) for all \(p < p_c \), then there exists a finite constant \(C_2 \) such that for all \(n \),

\[
\mathbb{E}_{p_c}|B_I(x, n)| \leq C_2 n.
\]

Before we proceed with the proof of this theorem, we discuss examples of graphs for which the assumption of Theorem 1 is known to hold. It is believed that as \(p \nearrow p_c \), the expected size of \(C(x) \) diverges like \((p_c - p)^{-\gamma} \). The assumption of Theorem 1 can be interpreted as the mean-field bound \(\gamma \leq 1 \). It is well known that for vertex-transitive graphs this bound is satisfied if the triangle condition holds at \(p_c \) [1]: For \(x \in V \),

\[
\sum_{y, z \in V} \mathbb{P}_{p_c}(x \leftrightarrow y) \mathbb{P}_{p_c}(y \leftrightarrow z) \mathbb{P}_{p_c}(z \leftrightarrow x) < \infty.
\]

\(^{1}\)RESEARCH PARTIALLY SUPPORTED BY EXCELLENCE FUND GRANT OF TU/E OF REMCO VAN DER HOFSTAD.
This condition holds on certain Euclidean lattices \mathbb{Z}^d including the nearest-neighbor lattice \mathbb{Z}^d with $d \geq 19$ and sufficiently spread-out lattices with $d > 6$. It also holds for a rather general class of non-amenable transitive graphs $[6,8,9,10]$. It has been shown in [7] that for vertex-transitive graphs, the triangle condition is equivalent to the so-called open triangle condition. The latter is often used instead of the triangle condition in studying the mean-field criticality.

Proof of Theorem 1. Let $p < p_c$. We consider the following coupling of percolation with parameter p and with parameter p_c. First delete edges independently with probability $1 - p_c$, then every present edge is deleted independently with probability $1 - (p/p_c)$. This construction implies that for $x, y \in V, p < p_c$, and an integer n,

$$P_p(x \leftrightarrow^n y) \geq \left(\frac{p}{p_c}\right)^n P_{p_c}(x \leftrightarrow^n y).$$

Summing over $y \in V$ and using the inequality $P_p(x \leftrightarrow^n y) \leq P_p(x \leftrightarrow y)$, we obtain

$$E_p\left|B_I(x,n)\right| \leq \left(\frac{p_c}{p}\right)^n E_p\left|C(x)\right|.$$

The result follows by taking $p = p_c(1 - \frac{1}{2n})$. □

Acknowledgements. I would like to thank Takashi Kumagai for valuable comments and advice.

References

