Weak disorder asymptotics in the stochastic mean-field model of distance

Citation for published version (APA):

DOI:
10.1214/10-AAP753

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
WEAK DISORDER ASYMPTOTICS IN THE STOCHASTIC MEAN-FIELD MODEL OF DISTANCE

BY SHANKAR BHAMIDI1 AND REMCO VAN DER HOFSTAD2

University of North Carolina and Eindhoven University of Technology

In the recent past, there has been a concerted effort to develop mathematical models for real-world networks and to analyze various dynamics on these models. One particular problem of significant importance is to understand the effect of random edge lengths or costs on the geometry and flow transporting properties of the network. Two different regimes are of great interest, the weak disorder regime where optimality of a path is determined by the sum of edge weights on the path and the strong disorder regime where optimality of a path is determined by the maximal edge weight on the path. In the context of the stochastic mean-field model of distance, we provide the first mathematically tractable model of weak disorder and show that no transition occurs at finite temperature. Indeed, we show that for every finite temperature, the number of edges on the minimal weight path (i.e., the hopcount) is $\Theta(\log n)$ and satisfies a central limit theorem with asymptotic means and variances of order $\Theta(\log n)$, with limiting constants expressible in terms of the Malthusian rate of growth and the mean of the stable-age distribution of an associated continuous-time branching process. More precisely, we take independent and identically distributed edge weights with distribution E^{s} for some parameter $s > 0$, where E is an exponential random variable with mean 1. Then the asymptotic mean and variance of the central limit theorem for the hopcount are $s \log n$ and $s^2 \log n$, respectively. We also find limiting distributional asymptotics for the value of the minimal weight path in terms of extreme value distributions and martingale limits of branching processes.

1. Introduction. The last few years have witnessed an explosion in empirical data collected on various real-world networks, including transportation networks like road and rail networks and data transmission networks such as the Internet. This has stimulated an intense inter-disciplinary effort to formulate mathematical network models to understand their structure as well as the evolution of such real-world networks. Rigorously analyzing properties of these models and deriving asymptotics as the size of the network becomes large is currently an active area of modern probability theory.
In many contexts, these models are used to describe transportation networks, and understanding their flow carrying properties is of paramount importance. Real-world networks are described not only by their graph structure, which give us information about the links between vertices in the network, but also by their associated edge weights that represent cost or time required to traverse the edge. Similar questions form the core of one of the fundamental problems in the modern theory of discrete probability, namely first passage percolation. In brief, one starts with a finite network model \(K_n \) (e.g., the \([-n,n]^2\) box in the integer lattice \(\mathbb{Z}^2 \)). Each edge \(e \) is given some random edge weight \(l_e \), usually assumed to be nonnegative, independent and identically distributed (i.i.d.) across edges. We shall sometimes refer to \(l_e \) as the length or cost of the edge \(e \). For any two vertices \(u, v \in K_n \), and a path \(P \) between the two vertices, the cost \(f(P) \) of the path is some function of the edge weights on the path (see the next section where we describe two natural regimes). The optimal path \(P_{\text{opt}}(u,v) \) between the two vertices is the path that minimizes this cost function amongst all possible such paths. Now fix two vertices in \(K_n \), for example, in the case of the two-dimensional integer lattice, the origin and the point \((n,0)\). One is then interested in deriving properties of the optimal path between these two vertices, at least as the size of the network tends to infinity.

In the modern applied context, two particular statistics of this optimal path are of importance:

(a) \(f(P_{\text{opt}}(u,v)) \): the cost of the optimal path. In many situations, this gives the cost of transporting a unit of flow between the two vertices.

(b) \(H(P_{\text{opt}}(u,v)) \): the number of edges in the optimal path. This represents the amount of time that a message takes in getting between the two vertices. The mental picture one should have is that the network is transporting flow between various vertices via optimal paths, and delay, that is, the amount of time that a message takes in getting between vertices is the number of edges or hops on the optimal path. Thus, this quantity is often referred to as the hopcount.

1.1. Weak and strong disorder. When modeling random disordered systems, two cost regimes for the cost \(f(P) \) of a path \(P \) are of interest, the strong disorder and weak disorder regime. Throughout the discussion below, we start with a connected network \(K_n \) on \(n \) vertices, with each edge assigned edge weight \(l_e \). Fix two vertices denoted by 1 and 2 (say chosen uniformly at random amongst all vertices). We are interested in properties of the optimal path between these two vertices. Let \(\mathcal{P}_{12} \) denote the set of all paths between vertices 1 and 2.

Weak disorder regime: This is the conventional setup where, for any path \(P \in \mathcal{P}_{12} \), the cost of the path is

\[
(1.1) \quad f_{\text{wk-dis}}(P) = \sum_{e \in P} l_e.
\]

The optimal path, denoted by \(P_{\text{wk-dis}} \), is defined by

\[
(1.2) \quad P_{\text{wk-dis}} = \arg\min_{P \in \mathcal{P}_{12}} f_{\text{wk-dis}}(P).
\]
In our setup, the optimal path will always be unique. We are then interested in the cost and hopcount of this optimal path.

Strong disorder regime: Here, for any path \(P \in \mathcal{P}_{12} \), the cost of the path is given by

\[
 f_{st-dis}(P) = \max_{e \in P} l_e.
\]

As before, the optimal path, denoted by \(P_{st-dis} \), is defined by

\[
 P_{st-dis} = \arg \min_{P \in \mathcal{P}_{12}} f_{st-dis}(P).
\]

From a statistical physics viewpoint, one is interested in parametrizing the above problem via a real-valued parameter say \(\beta \), often called the “inverse temperature” of the system, such that as \(\beta \to \infty \), we get the strong disorder regime, while for finite values of \(\beta \), we have the weak disorder regime. One interesting way of parameterizing the above problem is to consider the original graph \(K_n \) with some edge random variables \(w_e \) and consider the model \(G_n(\beta) \) where each edge is given weight \(l_e(\beta) = \exp(\beta w_e) \). The \(\beta \to \infty \) regime then corresponds to the strong disorder regime with edge weights \(w_e \), the \(\beta = 0 \) regime corresponds to the graph distance regime (where each edge has fixed weight 1), while finite positive values of \(\beta \) are supposed to model the weak disorder regime and are meant to interpolate between the graph distance regime and the strong disorder regime. What is of paramount interest is to understand if and when a transition occurs, namely given some model \(K_n \) of network on \(n \) vertices and edge distribution \(w_e \sim F \), for example, the uniform or exponential distribution, is there some finite value of \(\beta \) for which a transition occurs from the weak disorder regime to the strong disorder regime, where the graph begins to behave as in the strong disorder regime? What are the properties of the optimal paths in various regimes, and how does the hop-count scale as a function of \(\beta \), at least in the \(n \to \infty \) large network limit? Although a number of studies have been carried out at the simulation level (see, e.g., [9] and the references therein) to understand such models of disorder in the context of various random graph models resulting in fascinating conjectures, there has been no rigorous effort carried out to derive results in this context.

Our goal is to formulate a solvable model in this context and to exhibit how such questions have deep connections to the stable-age distribution theory of continuous-time branching processes as formulated by Jagers and Nerman; see, for example, [14]. Without further ado, let us dive into the formulation of the model in our context.

1.2. **Model formulation.** Let \(K_n \) be the complete graph with vertex set \([n] \equiv \{1, \ldots, n\} \) and edge set \(E_n = \{ij : i, j \in [n], i \neq j\} \). Each edge \(e \) is given weight \(l_e = (E_e)^s \) for some fixed \(s > 0 \), where \((E_e)_{e \in E_n} \) are i.i.d. exponential random variables with mean 1. The optimal path between two vertices is the path that minimizes the sum of weights on that path, as in the weak disorder regime. In the
context of the above discussion of strong and weak disorder, $s = 0$ corresponds to
the graph distance, while $s = \infty$ corresponds to the strong disorder regime with
degree weights E_e, the parameter $\beta > 0$ above is equal to s and the random variable
$(w_e)_{e \in E_n}$ equals $w_e = \log (E_e)$, which has a Gumbel distribution. The advantage
of this formulation is that it gives a model that can be rigorously analyzed. The
$s = 1$ regime is one of the most well-studied models in probabilistic combinatorial
optimization (see, e.g., [2, 3, 8, 11, 16, 21]) and often goes under the name of
“stochastic mean-field model of distance.” For a fixed $s \in \mathbb{R}^+$, we are interested
in various statistics of the optimal path, in particular, in the asymptotics for the
weight and hopcount of the optimal path as $n \to \infty$.

To state the results, we shall need some definition. Let $(Y_j)_{j \geq 1}$ be i.i.d. ex-
ponential random variables with mean 1. Define the random variables L_i by the
equation
\begin{equation}
L_i = \left(\sum_{j=1}^{i} Y_j \right)^s.
\end{equation}
Let \mathcal{P} be the above point process, that is,
\begin{equation}
\mathcal{P} = (L_1, L_2, \ldots).
\end{equation}
While the parameter s plays an important role in our analysis, for the sake of
simplicity, we shall omit it from the notation. The reader should keep in mind
that all the important constructions that arise in the analysis and in the description
of our results, such as the point process above, depend on this parameter. Now
consider the continuous-time branching process (CTBP) where at time $t = 0$ we
start with one vertex (called the root or the original ancestor), each vertex v lives
forever, and has an offspring distribution $P_v \sim P$ as in (1.6) independently of every
other vertex. Let $(\text{BP}_t)_{t \geq 0}$ denote the CTBP with the above offspring distribution.
The general theory of branching processes (see, e.g., [14]) implies that there exists
a constant $\lambda = \lambda(s)$, called the Malthusian rate of growth, that determines the rate
of explosive growth of this model. In particular, if $z_t = |\text{BP}_t|$ denotes the number of
individuals born by time t, then there exists a strictly positive random variable W
such that
\begin{equation}
e^{-\lambda t} z_t \overset{\text{a.s.}}{\longrightarrow} W,
\end{equation}
where $\overset{\text{a.s.}}{\longrightarrow}$ denotes convergence almost surely. The constant λ
satisfies the equation
\begin{equation}
\sum_{i=1}^{\infty} \mathbb{E}(e^{-\lambda L_i}) = 1.
\end{equation}
In this case, an explicit computation (see Lemma 3.1 below) implies that
\begin{equation}
\lambda = \lambda(s) = \Gamma(1 + 1/s)^s.
\end{equation}
Now let $W^{(1)}, W^{(2)}$ be i.i.d. with distribution W where W is as defined above in (1.7). Define the Cox process \mathcal{P}_{cox} which, given $W^{(1)}$ and $W^{(2)}$, is a Poisson process on \mathbb{R} with rate function given by

$$\gamma(x) = \frac{2\lambda}{s} W^{(1)} W^{(2)} e^{2\lambda x}, \quad x \in \mathbb{R}. \tag{1.10}$$

Let $\Xi^{(1)}$ denote the first point of the point process \mathcal{P}_{cox}.

1.3. Results. We are now in a position to state our results. Recall that we started with the complete graph where each edge has distribution $l_e = E^s_e$, where $(E_e)_{e \in E_n}$ are i.i.d. exponential random variables having mean one. The first result identifies the limiting distribution of the weight of the minimal weight path while the second result below identifies the asymptotics for the number of edges on the minimal weight path. In the statement below, \xrightarrow{d} denotes convergence in distribution.

Theorem 1.1 (The weight of the shortest-weight path). Let $C = C(s)$ denote the cost of the optimal path between vertices 1 and 2. Then, as $n \to \infty$,

$$n^s C - \frac{1}{\lambda} \log n \xrightarrow{d} 2\Xi^{(1)}, \tag{1.11}$$

and

$$2\Xi^{(1)} \xrightarrow{d} \frac{1}{\lambda} (G - \log W^{(1)} - \log W^{(2)} - \log (1/s)), \tag{1.12}$$

where G is a standard Gumbel random variable independent of $W^{(1)}$ and $W^{(2)}$, and $W^{(1)}$ and $W^{(2)}$ are two independent copies of the random variable W appearing in (1.7).

Theorem 1.2 (CLT for the hopcount). Let $H_n = H_n(s)$ denote the hopcount, that is, the number of edges on the optimal path between vertices 1 and 2. Then, as $n \to \infty$,

$$\frac{H_n - s \log n}{\sqrt{s^2 \log n}} \xrightarrow{d} Z, \tag{1.13}$$

where Z has a standard normal distribution.

Remarks. (a) Our proof shows that the convergence in Theorems 1.1 and 1.2 in fact occurs jointly, namely

$$\left(n^s C - \frac{1}{\lambda} \log n, \frac{H_n - s \log n}{\sqrt{s^2 \log n}} \right) \xrightarrow{d} (2\Xi^{(1)}, Z), \tag{1.14}$$
where the limiting random variables $\Xi^{(1)}, Z$ are independent.

(b) Not much is known about the random variable W in (1.7). Indeed, the branching property can be used in order to show that it satisfies the distributional relation

$$W \stackrel{d}{=} \sum_{i=1}^{\infty} e^{-\lambda L_i} W_i,$$

(1.15)

where $(W_i)_{i \geq 1}$ is an i.i.d. sequence of random variables with the same distribution as W independent of $(L_i)_{i \geq 1}$, and where L_i is defined in (1.5). Using (1.15) and properties of functionals of Poisson processes, one can show that the function $\phi(u) = \mathbb{E}(e^{-uW})$, defined for $u \in \mathbb{R}^+$, is the unique function satisfying the functional relationship

$$\phi(u) = \exp\left(\int_0^\infty [\phi(ue^{-\lambda x^2}) - 1] \, dx\right), \quad \phi(0) = 1.$$

(1.16)

When $s = 1$, then one can see this way that W is an exponential random variable with rate 1, but for other values of s, we have no explicit form of W.

(c) The distributional equivalence given by (1.12) is proved in Lemma 2.6 below.

1.4. Discussion. In this section, we discuss the relevance of our results and how they relate to existing literature as well as various conjectures from statistical physics. The standing assumption in this discussion is that optimal paths are uniquely defined.

First vs. second order results. First order results (in our context showing, for example, that $H_n/s \log n \overset{\text{P}}{\to} 1$, where $\overset{\text{P}}{\to}$ denotes convergence in probability) are much easier to prove than the detailed convergence in distribution proved in Theorems 1.1 and 1.2. One of the reasons for the length of this paper is that proving second order distributional convergence results in these sorts of problems proves to be much more difficult. Further, while in previous studies (e.g., [6] for various random network models) the hopcount satisfied a central limit theorem (CLT) with matching means and variances, Theorem 1.2 is novel in the sense that it says that, for large n, the hopcount has an approximate normal distribution with mean $s \log n$ and variance $s^2 \log n$. Theorems such as Theorem 1.1 for the actual cost of the minimal weight path have been proven in a number of contexts (see, e.g., [6, 16, 21]), but often prove quite tricky to handle due to the fact that we only recenter the random variables and do not divide by a normalizing factor going to ∞. Thus, one needs to be extremely careful in analyzing the contribution of various factors as $n \to \infty$. See, for example, [6] to see the various factors that could contribute to the limiting distribution in the context of exponential weights on a random graph.
Strong disorder regime and minimal spanning trees. Under strong disorder, it is easy to check using any of the standard greedy algorithms for constructing minimal spanning trees that the number of edges in the optimal path between any two vertices in the network has the same distribution as the number of edges between the two vertices in the minimal spanning tree (with edge weights \(l_e\)). More precisely, the optimal path between two vertices in the strong disorder regime is identical to the path between the two vertices in the minimal spanning tree.

In the context of our model, under strong disorder (“the \(s = \infty\) regime”) what is known is that for the complete graph, the hopcount of the optimal path \(H(P_{\text{st-dis}}) \sim \Theta_P(n^{1/3})\). Here, for two sequences of random variables \((X_n)_{n \geq 1}\) and \((Y_n)_{n \geq 1}\), we write \(X_n = \Theta_P(Y_n)\) if \(X_n/Y_n\) and \(Y_n/X_n\) are tight sequences of random variables. This was first conjectured in [9] and recently proven in [1]. The above result in particular shows that no transition occurs for finite values of \(s\). It might be interesting to analyze the above model when \(s = s_n\) is a function of \(n\) and see when the strong disorder regime emerges (\(s_n \to \infty\) regime) or the graph distance type behavior is preserved (\(s_n \to 0\)). In our proofs, we have kept formulas as explicit as possible in order to be able to use them later on to study the strong disorder case or the graph distance limit. Let us now heuristically discuss the strong disorder regime.

Heuristics for strong disorder. We see that the hopcount obeys a CLT with asymptotic mean and variance equal to \(s \log n\) and \(s^2 \log n\), respectively. It is reasonable to expect that the CLT with asymptotic mean and variance equal to \(s_n \log n\) and \(s_n^2 \log n\) remains valid when \(s_n\) is not too large. However, when \(s_n\) is quite large, then we should be in a phase that is close to the minimal spanning tree, for which the hopcount scales like \(n^{1/3}\) and has variance of order \(n^{2/3}\) (since it is not concentrated). It would be of great interest to see until what value of \(s_n\) the CLT with parameters \(s_n \log n\) and \(s_n^2 \log n\) remains valid. By the above, we see that for this, \(s_n\) cannot grow faster than \(n^{1/3}\) for this to be true. In analogy to the scaling for the diameter of the Erdős–Rényi random graph with edge probability \(p = (1 + \varepsilon_n)/n\), which has size \(\varepsilon_n^{-1} \log (\varepsilon_n^3 n)\) as long as \(\varepsilon_n \gg n^{-1/3}\) [17], one may wonder whether the hopcount scales in leading order as \(s_n \log (n/s_n^3)\), as long as \(s_n \ll n^{1/3}\), and where \(s_n\) plays a similar role as \(1/\varepsilon_n\).

Our choice of edge weights. If we rescale our weights by \(n^\varepsilon\), the (expected) number of link weights that are at most \(x\), from a given vertex is, in our model, equal to

\[
(n - 1)[1 - e^{-x^{1/\varepsilon}/n}] \approx x^{1/\varepsilon}.
\]

Thus, our weights are chosen such that the weights obey a power law close to 0. In Internet, the link weights are prescribed by the Internet Service Providers (ISPs). Around 2000, CISCO, one of the main manufacturers of Internet routers, has recommended to use the link weights in OSPF, the Internet’s intradomain routing
protocol, that are proportional to the inverse of the capacity or bandwidth of the link. This recommendation has been followed by a many ISPs in order to optimally provision and manage their networks.

Assuming that the link weights equals the inverse bandwidth or capacity, our scaling relation in (1.17) is equivalent to the statement that the (expected) number of links from a given vertex with capacity at least B is close to $B^{-1/s}$ for B large. Thus, there is a power-law relation for the link capacities in our model, and $1/s$ is the power-law exponent in this relationship. By varying s, we can obtain any power-law exponent. Unfortunately, in Internet, measuring the link capacities is a notoriously hard problem, and, as a result, precise measurements of their empirical properties are not available. Thus, while our model may appear reasonable, we have no way of empirically verifying it.

Other edge weights. Note that in our context the distribution of edge weights is $F(x) = 1 - \exp(-x^{1/s}) \sim x^{1/s}$ for x close to zero. One would expect that the results in the paper carry over rather easily to edge weights with distribution function F for which $F(x) = x^{1/s}(1 + o(1))$ when $x \downarrow 0$. When $F(x)$ has entirely different behavior at $x = 0$, other properties might arise. Indeed, in our current setting, we see that with high probability the shortest-weight path traverses only through edges of weights of order n^{-s}, which is the size of the minimum of n i.i.d. random variables with distribution E^s, where E is exponential with mean 1. Thus, the benefit of using edges of such small weight vastly outweigh the fact that the path thus become longer [i.e., has $\Theta_P(\log n)$ edges]. Now, when $F(x) = e^{-x^{-a}}$ for some $a > 0$, then the minimum of n such random variables is $(\log n)^{-1/a}(1 + o_P(1))$, so that the minimal weight edge in the complete graph equals $2^{-1/a}(\log n)^{-1/a}(1 + o_P(1))$. Here, we write that $o_P(b_n)$ to denote a random variable X_n which satisfies that $X_n/b_n \xrightarrow{P} 0$. In particular, when $a > 1$, we cannot expect the optimal path to have length $\Theta_P(\log n)$, as already the immediate path between vertices 1 and 2 has smaller weight than any path of length $\log n$.

Moreover, it is not hard to see that the minimal two-step path between vertices 1 and 2 has weight $2^{1+1/a}(\log n)^{-1/a}(1 + o_P(1))$, so that the hopcount is with high probability at most $2^{1+2/a}$. Thus, this simple argument proves that the hopcount is tight for all $a > 0$ (as is the case for the CM with infinite mean degrees [5]). In [7], this setting is investigated in more detail, and it is shown that, for most value of a, the hopcount converges in probability to a constant. Thus, it is clear that weights with distribution function $F(x) = e^{-x^{-a}}$ belong to a different universality class as compared to edge weights E^s, where E is an exponential random variable and $s > 0$. This leads us to the following general program:

Identify the universality classes for the weights in first passage percolation on the complete graph.
Extensions of our results to random graphs. A significant amount of work, both at the nonrigorous ([9, 10, 13, 19] and the references therein) as well as at the rigorous level [4–6, 20, 23], has been devoted to first passage percolation on random network models. What is now generally expected is that in a wide variety of network models and general edge costs, under weak disorder the hopcount scales as $\Theta(\log n)$ and satisfies central limit theorems as in Theorem 1.2. We hope that the ideas in this paper can also be applied to first passage percolation problems on various random graphs, such as the configuration model (CM) with any given prescribed degree distribution $(p_k)_{k \geq 0}$. In [6], first passage percolation with exponential weights was studied on the CM with finite mean degrees, and it is proved that similar results as on the complete graph hold in this case. Indeed, the hopcount satisfies a CLT with asymptotically equal mean and variance equal to $\lambda \log n$, where λ is some parameter expressible in terms of the degree distribution. We expect that when putting exponential weights raised to the power s on the edges changes this behavior, and the means and variances will become different constants times $\log n$. While the behavior in [6] is remarkably universal, we expect that for weights equal to powers of exponentials, when the variance of the degrees is infinite, the asymptotic ratio of mean and variance will be s as on the complete graph, while for finite variances degrees, the ratio may be different.

We see that the behavior of first passage percolation on the complete graph with weights E^s (as studied in this paper) gives rise to CLTs for the hopcount with means and variances of order $\log n$, while weights with distribution function $F(x) = e^{-x-a}$ give rise to bounded hopcounts, as is the case for the graph distance when all weights are equal to 1. It would be of great interest to extend such results to random graphs. In particular, it would be of interest to determine when the hopcount satisfies a CLT with asymptotic mean and variance proportional to $\log n$, and when the hopcount behaves in a similar way as the graph distance as studied for the CM in [20, 22, 23]. This leads us to the following question:

How do the universality classes of first passage percolation on the configuration model relate to those on the complete graph?

1.5. Proof idea and overview of the paper. For the sake of notational convenience, we shall rescale each edge length by a factor $(n-1)^s$, so that each edge has distribution $(Y_e)^s$, where Y_e are exponential random variables with mean $n-1$. This does not change the optimal path while the cost of this path is scaled up by $(n-1)^s$. For the remainder of the paper, we shall think of the edge weights as lengths which thus induce a random metric on the complete graph, and shall often refer to the optimal path between two vertices as the shortest path between them. We are interested in the optimal path between vertices 1 and 2. Consider water percolating through the network started simultaneously from two sources, vertices 1 and 2, at rate one. Then the first time of collision between the two flow processes, namely the first time the flow percolating from vertex 1 sees a vertex
already visited by the flow percolating from vertex 2 (or vice versa) gives the shortest path between the two vertices. Let \(z_t^{n,(1)} \) and \(z_t^{n,(2)} \) denote the number of vertices seen by the flow cluster by time \(t \) for the flow emanating from vertices 1 and 2, respectively. For large \(n \), the flow clusters look like independent versions of the CTBPs as formulated in Section 1.2, at least until they collide. A coupling is rigorously formulated in Sections 2.1.1 and 2.1.2. Further, they collide only when both clusters reach size \(\Theta_\mathbb{P}(\sqrt{n}) \). At a heuristic level, at any time \(t \), the rate of collision \(\gamma_n(t) \) in a small interval \([t, t + dt)\) should be

\[
\gamma_n(t) \propto \left(\frac{z_t^{n,(1)} z_t^{n,(2)}}{n} \right) dt.
\] (1.18)

Now we use the fact that for large \(t \), \(z_t^{n,(i)} \sim W^{(i)} e^{\lambda t} \), where \(W^{(i)} \) is the limiting random variable for the associated CTBP defined in (1.7), to see that

\[
\gamma_n(x) \propto \frac{W^{(1)} W^{(2)} e^{2\lambda x}}{n}.
\] (1.19)

Thus, collisions happen at time \((2\lambda)^{-1} \log n \pm O_\mathbb{P}(1) \), where \(O_\mathbb{P}(b_n) \) denotes a sequence of random variables \((X_n)_{n \geq 1} \) for which \(|X_n|/b_n \) is a tight sequence. If we let \(T_{12} \) denote the collision time, then the length of the optimal path equals \(W_n = 2T_{12} \). The above argument gives asymptotics for the collision time and hence the length of the optimal path.

For the hopcount, we shall use general branching processes arguments to show that at large time \(t \), if one is interested in the distribution of the generations (in our context this gives the number of individuals at various graph distances away from the root, namely the originating vertices 1 and 2), the contribution to the population comes from generations \(t/\beta(s) \) and the deviations are normally distributed around this value. Here the constant \(\beta(s) > 0 \) denotes the mean of the stable-age distribution of the associated branching process. Intuitively, the optimal path between vertices 1 and 2 as constructed via the above simultaneous flow picture looks like the following: Suppose the connecting edge between the two clusters \((v_1, v_2)\) arises due to the birth of a child to vertex \(v_1 \) in the flow cluster of vertex 1 and this child, \(v_2 \) has already been visited by the flow from 2. This happens at around time \((2\lambda)^{-1} \log n \pm O_\mathbb{P}(1) \). The hopcount \(H_n \) of the optimal path is given by the equation

\[
H_n = G_1 + G_2 + 1,
\] (1.20)

where \(G_1 \) and \(G_2 \) are the generations of vertex \(v_1 \) and \(v_2 \) in flow cluster 1 and 2, respectively. Thus, understanding the distribution amongst generations in the coupled branching processes paves the way to understanding the hopcount. The remainder of this paper involves the conversion of the above heuristic into a rigorous argument. The organization of rest of the paper is as follows:
In Section 2.1, we shall couple the simultaneous flows from two vertices on K_n with CTBPs and show that the difference is negligible; Section 2.2 shows that the above coupling incorporated with technical results from CTBP theory give us asymptotics for the recentered length of the optimal path, namely Theorem 1.1. Section 2.3 shows how the distribution of individuals among different generations in the associated branching process proves Theorem 1.2. Finally, Section 3 proves all the CTBP results we need to carry out our analysis. This section is the most technical part of the paper and the point of organizing the paper in this fashion is to motivate the various results that are proved in Section 3.

2. Proofs. In this section, we prove our main results. Proofs of the necessary CTBP results are deferred to Section 3.

2.1. Dominating graph flow by continuous-time branching processes. In this section, we describe a coupling between the flows started from vertices 1 and 2 and their corresponding independent CTBPs with offspring distribution given by the point process in (1.6). We shall first start with the flow started from one vertex and then extend this to the simultaneous flow from two vertices.

2.1.1. Expansion of the flow from a single vertex. We start with some notation. Recall that K_n denoted the random disordered media represented by the complete graph where each undirected edge (i, j) has edge length E_{ij}^s where E_{ij} are i.i.d. exponentially distributed with mean $n - 1$ [alternatively, with rate $1/(n - 1)$]. These edge lengths make K_n a metric space (with random geodesics). Let the index set of K_n be $[n] := \{1, 2, \ldots, n\}$ and fix vertex 1. Think of this vertex as an originator of flow of some fluid which percolates through the whole network via the geodesics at rate 1. Let $i_1 = 1, i_2, \ldots \in [n]$ be the vertices in sequential order seen by the flow. For $t \geq 0$, let $\text{SWG}_t^{(1)}$ be the shortest-weight graph between vertex 1 and all the vertices that can be reached from 1 by shortest-weight paths of length at most t. More precisely, $\text{SWG}_t^{(1)}$ consists of these shortest-weight paths and the weights of all of the edges used for them. Let $(E_i^j)_{i \geq 1, j \geq 1}$ be a doubly infinite array of mean 1 exponential random variables. Then, by the properties of the extremes of $n - 1$ i.i.d. exponential random variables, each with mean $n - 1$, it is easy to see that the neighbors of 1 have distances from 1 distributed as

$$P_{n,1} = (E_1^1)^s, \left(E_1^1 + \frac{n - 1}{n - 2} E_2^1 \right)^s, \ldots$$

Similarly, the distribution of distances from vertex i_k (the kth vertex reached by the flow from 1) to vertices other than those already seen by the flow, is distributed as

$$P_{n,k} = \left(\frac{n - 1}{n - k} E_{1}^{k} \right)^s, \left(\frac{n - 1}{n - k} E_{1}^{k} + \frac{n - 1}{n - k - 1} E_{2}^{k} \right)^s, \ldots$$
Call the above the immediate neighborhood process of vertex \(k \). Note that for each \(k \), by the memoryless property of the exponential distribution, the identity of the end point of each edge in the above point process is uniformly distributed among all \(\{i_1, i_2, \ldots, i_k\} \) vertices which have not been seen at the time when the flow hits vertex \(i_k \). Our aim is to couple this process with a CTBP with offspring distribution given by the point process \(\mathcal{P} \) defined by

\[
\mathcal{P} = \{(E_1)^s, (E_1 + E_2)^s, (E_1 + E_2 + E_3)^s, \ldots\},
\]

where \((E_i)_{i \geq 1}\) are i.i.d. exponential rate 1 random variables. Comparing (2.3) with (2.1) and (2.2), we see that, intuitively, the SWG\(_{t}^{(1)}\) should be stochastically smaller than the corresponding CTBP driven by offspring distribution \(\mathcal{P} \). The reason is that when the flow starts, then the number of edges it has to explore from vertex 1 is \(n - 1 \), but as the SWG\(_{t}^{(1)}\) increases with time, the number of edges originating from each new vertex is strictly smaller than \(n - 1 \) due to vertices already explored by the flow. Thus, the points are being depleted. We shall show that asymptotically for large \(n \), the difference is negligible. To do so, as the flow explores \(K_n \), we shall enlarge the graph \(K_n \) with new artificial vertices to compensate for the fact that SWG\(_{t}^{(1)}\) uses up vertices in \(K_n \) and effectively counteracting the depletion of points effect. For this, we shall need the following randomization ingredients:

(i) The complete graph \(K_n \) with random edge weights;
(ii) An infinite array of i.i.d. exponential random variables \((E_{i,j})_{i \in [n], j \geq n+1}\) each with mean \(n - 1 \);
(iii) An infinite sequence of independent branching process \((\tilde{\text{BP}}_i(\cdot))_{i \geq n+1}\), each driven by the offspring distribution in (2.3).

Before diving into the construction, we shall need the following simple lemma which follows directly from the memoryless property of the exponential distribution.

Lemma 2.1 (Powers of exponential distributions). (a) Consider the random variable \(E^s \) where \(E \) has an exponential distribution with mean \(n - 1 \). Then, for any fixed \(r > 0 \), the conditional distribution of \(E^s \mid E^s > r \) equals that of \((\tilde{E} + r^{1/s})^s\), where \(\tilde{E} \) is an independent random variable with exponential distribution with mean \(n - 1 \).

(b) Consider the surplus random variable \((E^s - r) \mid E^s > r\). This random variable has the same distribution as the first point of a Poisson point process with rate

\[
\Lambda_r(x) = \frac{1}{s(n - 1)}(r + x)^{1/s - 1}, \quad x \geq 0.
\]

We shall use part (a) of Lemma 2.1 in the construction of the coupling while we shall use part (b) in the proof of the distributional result for the optimal weight. We start by proving Lemma 2.1.
Proof. Part (a) is immediate from the memoryless property of the exponential random variable. For part (b), we note that

\[
P(E^x - r \geq x \mid E^x > r) = P(E \geq (x + r)^{1/s} \mid E > r^{1/s})
\]

(2.5)

\[= e^{-(x+r)^{1/s} - r^{1/s}}/(n-1),
\]

while the probability that a Poisson point process with rate \(\lambda_1\) has no points before \(x\) equals

\[
e^{-\int_0^x \Lambda_r(y) \, dy} = e^{-\int_0^x 1_{s(n-1)} (r+y)^{1/s} - 1 \, dy} = e^{-(x+r)^{1/s} - r^{1/s}}/(n-1).
\]

(2.6)

Thus, the first point of this Poisson point process has the same distribution as the conditional law \(E^x - r \mid E^x > r\). □

Construction of the coupling. This proceeds via the following constructions:

(a) **Artificial inactive vertices:** Consider the flow traveling at rate one from vertex 1 on \(\tilde{K}_n\). Let \(z_{i,1}^n\) denote the number of vertices in \(\text{SWG}_{1}^n\). To evoke branching process terminology, we shall often refer to this as the number of vertices born in the flow cluster of 1 by time \(t\). For \(1 \leq k \leq n\), we define the stopping times

\[
T_k^n = \inf\{t : z_{i,1}^n = k\},
\]

(2.7)

so that \(T_1^n = 0\). Now consider the flow from vertex 1. For \(k \geq 2\), when the \(k\)th vertex \(i_k\) is discovered by the flow at time \(T_k^n\), create a new artificial vertex labeled by \(n + k - 1\). Let \(a(i_k)\) denote the vertex in \(\text{SWG}_{i_k}^n\) to which vertex \(i_k\) is attached. Then note that for all \(i_j \neq a(i_k) \in \text{SWG}_{i_k}^n\), by Lemma 2.1(a) and, conditionally on \(\text{SWG}_{i_k}^n\), the edge lengths of edge \((i_j, i_k)\) have distribution \((T_k^n - T_j^n)^{1/s} + E)^s\) where \(E\) has an exponential distribution with mean \(n - 1\).

For the new artificial vertex \(n + k - 1\), we attach edge lengths from each vertex \(i_j \in \text{SWG}_{i_k}^n\) of length \((T_k^n - T_j^n)^{1/s} + E_{j,n+k-1}\) where the \(E_{j,n+k-1}\) are exponential random variables as described in the randomization needed for the coupling, and where we recall that \(T_j^n\) denotes the time of discovery of vertex \(i_j\). We shall think of the flow having reached a distance \(t - T_j^n\) on this edge. At the time of creation, we shall think of these artificial vertices as *inactive* as the flow has not yet reached this vertex. Think of these vertices as part of the network and the flow trying to get to them as well. Note that eventually the flow will reach these inactive vertices as well. Whenever the flow reaches an inactive artificial vertex, we shall think of this vertex becoming active, that is, it is *activated*. Let \(A_t\) denote the set of active artificial vertices. For \(k \geq 1\), let

\[
T_k^{n,k} := \inf\{t : |A_t| = k\}
\]

(2.8)

be the time of activation of the \(k\)th artificial vertex. Note that in this construction, edges exist only between vertices in \([n]\) and artificial vertices, no edges exist between artificial vertices.
Activation of artificial vertices: Note that activation of inactive vertices happens at times $T_k^{n,*}$ via an edge from a vertex in $\text{SWG}_k^{n,*} \subseteq [n]$ to an inactive artificial vertex $d_k \geq n + 1$. Suppose at this time the set of artificial vertices (active and inactive) is \{ $n + 1, n + 2, \ldots, n + j(T_k^{n,*})$ \}. When d_k is activated, the following constructions are performed:

(1) Remove all the edges from vertices in $[n]$ to d_k (other than the one that the flow used to get to it);
(2) Create a new inactive artificial vertex $n + j(T_k^{n,*}) + 1$. Just as before, create edges between each vertex $i \in [n]$ and vertex $n + j(T_k^{n,*}) + 1$ with edge lengths distributed as $(|t - T_k^{n,*}|^{1/s} + E_{i,n+j(T_k^{n,*})+1})^{s}$ and think of the flow as having already traveled $t - T_k^{n,*}$ on it;
(3) At this time, start a CTBP $\tilde{\text{BP}}_k(\cdot)$ with d_k as the ancestor. The vertices born in this branching process have no relation to the flow on K_n and associated inactive vertices. For time $t > T_k^{n,*}$, we shall call all the vertices in $\tilde{\text{BP}}_k(t)$, other than d_k, the descendants of vertex d_k at time t.

Let \mathcal{D}_t denote the set of all descendants of the associated CTBPs of active artificial vertices at time t and let

$$\text{BP}_t^{(1)} = \text{SWG}_t^{(1)} \cup \mathcal{A}_t \cup \mathcal{D}_t.$$ (2.9)

Let $z_t^{(1)} = |\text{BP}_t^{(1)}|$ denote the number of vertices reached at time t. The following proposition identifies properties of the above construction that will be crucial in our analysis. We shall prove this proposition in detail since later we shall use an almost identical proposition in the context of flow from two vertices which we shall state without proof in Section 2.1.2 below.

Proposition 2.1 (Properties of the coupling). In the above construction, the following holds:

(a) The process $(\text{BP}_t^{(1)})_{t \geq 0}$ is a CTBP driven by the point process \mathcal{P} in (2.3). The process $(\text{SWG}_t^{(1)})_{t \geq 0}$ is the shortest weight graph process of the flow emanating from vertex 1. As is obvious from (2.9), there is stochastic domination in the sense that, for all times $t \geq 0$, a.s.

$$\text{SWG}_t^{(1)} \subseteq \text{BP}_t^{(1)}.$$ (2.10)

In particular, $z_t^{n,(1)} = |\text{SWG}_t^{(1)}| \leq z_t^{(1)} = |\text{BP}_t^{(1)}|$ for all t.

(b) Let $\lambda = \lambda(s)$ be the Malthusian rate of growth of $\text{BP}_t^{(1)}$ as defined by (1.9). Then, given any $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that for times $t_n = (2\lambda)^{-1} \log n - C_\varepsilon$

$$\liminf_{n \to \infty} \mathbb{P}(\mathcal{A}_{t_n} = \emptyset) \geq 1 - \varepsilon.$$ (2.11)
(c) For any fixed $B \in \mathbb{R}$, letting $t_n = (2\lambda)^{-1} \log n + B$, the sequence of random variable $|A_{t_n}| + |DA_{t_n}|$ is a sequence of tight random variables. Since the processes $(|A_t| + |DA_t|)_{t \geq 0}$ are monotonically increasing in t, (2.9) implies that $\sup_{t \leq t_n} (z_t^{(1)} - z_t^{n,(1)})$ is tight and, in particular, as $n \to \infty$,

\begin{equation}
\sup_{t \leq t_n} \left| \frac{z_t^{n,(1)}}{z_t^{(1)}} - 1 \right| \overset{p}{\to} 0.
\end{equation}

Note that if $|A_{t_n}| = 0$, then $SWG_t^{(1)} = BP_t^{(1)}$ for all $t \leq t_n$, so that part (b) yields that there is little difference between the SWG and the CTBP up to time $(2\lambda)^{-1} \log n - C_\varepsilon$.

Proof. Part (a) is obvious from construction. To prove part (b), note that by construction, if $z_{tn}^{n,(1)} = k$, then the chance that the next vertex is an artificial inactive vertex is exactly k/n. Thus, if $z_{tn}^{n,(1)} = k_n$ then

\begin{equation}
|A_{t_n}| \overset{d}{=} \sum_{j=1}^{k_n} I_j,
\end{equation}

where I_j are independent Bernoulli(j/n) random variables, that is, $\mathbb{P}(I_j = 1) = 1 - \mathbb{P}(I_j = 0) = j/n$. Now to choose C_ε, first choose $C_\varepsilon^* > 0$ so small that $\exp(-C_\varepsilon^*/2) > 1 - \varepsilon/2$. Since $z_{tn}^{n,(1)} \leq z_{tn}^{(1)}$ and for the process $(z_t^{(1)})_{t \geq 0}$ the asymptotics (1.7) hold, we can choose C_ε^* such that

\begin{equation}
\mathbb{P}(z_{tn}^{n,(1)} > C_\varepsilon^* \sqrt{n}) < \varepsilon/2.
\end{equation}

Then

\[
\mathbb{P}(|A_{t_n}| > 0) \leq \mathbb{P}(|A_{t_n}| > 0, z_{tn}^{n,(1)} < C_\varepsilon^* \sqrt{n}) + \mathbb{P}(z_{tn}^{n,(1)} > C_\varepsilon^* \sqrt{n}) \\
\leq (1 - \exp(-C_\varepsilon^*/2)) + \varepsilon/2 < \varepsilon,
\]

where the second inequality follows using a Poisson approximation in (2.13) and (2.14). This proves part (b).

Finally to prove part (c), we note the following:

- Using part (b), we choose C_ε so that with high probability no artificial vertices have been activated by time $(2\lambda)^{-1} \log n - C_\varepsilon$;
- Using (2.13) and ideas similar to the above argument, one can show that the number of active artificial vertices by time $t_n = (2\lambda)^{-1} \log n + B$ can be stochastically dominated with high probability by a Poisson random variable X_B with mean $C(B)$ for some function $B \mapsto C(B)$.

These two observations together imply that with high probability

\[
|A_{t_n}| + |D A_{t_n}| \leq_{st} \sum_{j=1}^{X_B} |B P_j(B - C\varepsilon)|,
\]

where \(B P_j(\cdot)\) are independent CTBPs driven by \(P\), independent of \(X_B\) which is Poisson with mean \(C(B)\) and \(\leq_{st}\) denotes stochastic domination. Since the right-hand side is bounded a.s., this proves part (c). □

2.1.2. Simultaneous expansion and coupling. Let us now show how the above coupling can be extended to flow originating from two vertices 1, 2 simultaneously. We shall couple the flow to two independent CTBPs \((B P^{(i)}_t)_{i=1,2}\). All the ingredients of randomness shall be the same as in the previous section, namely, (i) the complete graph \(K_n\) with random edge lengths; (ii) the infinite array of exponential random variables \((E_{i,j})_{i\in[n], j\geq n+1}\); and (iii) the infinite sequence of independent CTBPs \((\tilde{B} P_i)_{i\geq 1}\) driven by \(P\). Think of flow now emanating from the two sources 1, 2 simultaneously at rate one exploring the shortest weight structure about the two sources. We shall stop the flow when there is a collision, that is, the flow from one vertex sees a vertex seen by the flow from the other vertex. As before, we let \(SWG^{(i)}_t\) denote the shortest weight graphs up to time \(t\) explored by the flow from each source \(i = 1, 2\) and let

\[
SWG_t = SWG^{(1)}_t \cup SWG^{(2)}_t.
\]

Let \(z^{(i)}_t = |SWG^{(i)}_t|\) and \(z^n_t = z^{(1)}_t + z^{(2)}_t\). Now let \(T^n_k\) denote the stopping time

\[
T^n_k = \inf\{t : z^n_t = k\},
\]

so that now \(T^n_2 = 0\). Let the vertex discovered at time \(T^n_k\) and attached to one of the two flow clusters be \(i_k \in [n]\). We shall call this the time of birth of the vertex \(i_k\). Extra care is needed as subtle issues of double counting of edges may arise.

The construction proceeds as before via two ingredients:

(a) Artificial inactive vertices: By convention, we shall think of the edge between 1 and 2 to belong to the flow from vertex 1, so that vertex 2 immediately is one neighbor short. To compensate for this shortage, at time 0, we shall add a new artificial inactive vertex labeled by \(n + 1\). Compared to the other artificial vertices this shall be special in the sense that vertex 1 will not have an edge to this vertex (or the artificial vertices that replace this vertex when the flow reaches this vertex). At time 0, attach an edge \((2, n + 1)\) of random length \(E_{2,n+1}^s\). Now start the flow from the two sources on the vertex set \([n] \cup \{n + 1\}\). The flow percolates from these two sources on the (expanded) network discovering new vertices, both actual vertices in \([n]\) as well as artificial vertices. Let \(SWG^*_t\) denote this flow process with \(z^{(i)*}_t = |SWG^*_t|\) and let

\[
\tilde{T}^*_k = \inf\{t : z^{(i)*}_t = k\}.
\]
Let i_k denote the vertex discovered by the flow at time $\tilde{T}_{T_k}^n$ (this vertex could either be an actual vertex in $[n]$ or an artificial inactive vertex). Create a new artificial vertex labeled by $n + k$. If i_k is in $\text{SWG}_{T_k}^{(2)}$ then remove all the edges between i_k and all the vertices in $\text{SWG}_{T_k}^{(2)}$ (namely real vertices in the actual graph $[n]$ which are part of $\text{SWG}_{T_k}^{(2)}$ that have already been explored by the flow from 2). (Do the exact opposite if $i_k \in \text{SWG}_{T_k}^{(1)}$.) The edges (v, i_k) for $v \in \text{SWG}_{T_k}^{(1)}$ are quite special (see the beginning of Section 2.2). Call these the potential connecting edges as these are the edges through which collisions of the two flow clusters may happen. Also perform the following constructions:

- If $i_k \neq n + 1$ or any of the replacements of $n + 1$ (this term is defined below), then attach edges between the artificial vertex $n + k$ and all $i_j \in \text{SWG}_{T_k}^{(2)}$ with edge lengths $((\tilde{T}_{T_k}^n - T_{ij}^n)^{1/s} + E_{ij,n+k})^s$. The flow would have already reached up to distance $(\tilde{T}_{T_k}^n - T_{ij}^n)$ on this edge to this new vertex.

- If $i_k = n + 1$, then replace this by a new vertex $n + k$. This vertex will be called a replacement of the special artificial vertex $n + 1$. Also replacements of such replacements shall be called replacements. Remove all edges from $i_j \in \text{SWG}_{T_k}^{(2)}$ to i_k and add back edges from these vertices excluding vertex 1 to vertex $n + 1$ with edge lengths $((\tilde{T}_{T_k}^n - T_{ij}^n)^{1/s} + E_{ij,n+k})^s$. This can be understood by noting that the flow would have already reached up to distance $(\tilde{T}_{T_k}^n - T_{ij}^n)$ on this edge to this new vertex.

Every new artificial vertex when it is born is inactive. Whenever the flow reaches an inactive artificial vertex we shall think of this vertex becoming active and belonging to the flow cluster from which this artificial vertex was reached. Let $\mathcal{A}_i(t)$ denote the set of active artificial vertices corresponding to flow cluster $i = 1, 2$ at time t and let $\mathcal{A}_i = \mathcal{A}_i^{(1)} \cup \mathcal{A}_i^{(2)}$ be the set of artificial vertices. For $k \geq 1$, we let

$$T_{k}^{n,*} := \inf \{t : |\mathcal{A}_i| = k\}$$

be the time of activation of the kth artificial vertex. Note that, as before, edges exist only between vertices in $[n]$ and artificial vertices in this construction, no edges exist between artificial vertices.

(b) Activation of artificial vertices: The flow will eventually reach inactive artificial vertices. When this happens say that activation happens. This happens at times $T_{k}^{n,*}$ via an edge from a vertex in $\text{SWG}_{T_k}^{n,*} \subseteq [n]$ to an inactive artificial vertex $d_k \geq n + 1$ from one of the two flow clusters. When an artificial vertex gets activated, it belongs to the flow cluster that activates it and so do all its descendants (the notion of a descendant is defined below). Suppose that at this time, the set of artificial vertices (active and inactive) is $\{n + 1, n + 2, \ldots, n + j(T_{k}^{n,*})\}$. As described above, this inactive artificial vertex is replaced by a new inactive artificial vertex with appropriate edges and edge lengths.
Further, at this time, start the CTBP \(\widehat{BP}_k(\cdot) \) with \(d_k \) as the ancestor. The vertices born in this branching process have no relation to the flow on \(K_n \) and associated inactive vertices. At time \(t > T^*_k \), we shall call all the vertices in \(\widehat{BP}_k \) other than \(d_k \) the descendants of vertex \(d_k \).

Let \(DA^{(i)}_t \) denote the set of all descendants of the associated CTBPs of active artificial vertices at time \(t \) in flow cluster \(i = 1, 2 \) and define the processes

\[
BP^{(i)}_t = SWG^{(i)}_t \cup A^{(i)}_t \cup DA^{(i)}_t, \quad i = 1, 2.
\]

Let \(z_t^{(i)} = |BP^{(i)}_t| \). Finally, let \(BP_t = BP^{(1)}_t \cup BP^{(2)}_t \) denote the full flow process.

This completes the construction of the coupling.

The following proposition collects the properties of our construction that we shall need. It is analogous to Proposition 2.1 and we shall not give a proof. Recall that \(T_{12} \) denotes the collision time of the two flow processes.

Proposition 2.2 (Properties of the coupling). In the above construction, the following holds:

(a) The processes \((BP^{(i)}_t)_{t \geq 0} \) are independent CTBPs driven by the point process \(P \) in (2.3). The process \((SWG^{(i)}_t)_{0 \leq t \leq T_{12}} \) is the shortest weight graph process of the flow emanating from vertex \(i \) till the collision time. As is obvious from (2.20), there is stochastic domination in the sense that for all times \(t \geq 0 \),

\[
SWG^{(i)}_t \subseteq BP^{(i)}_t.
\]

(b) Let \(\lambda = \lambda(s) \) be the Malthusian rate of growth of \(BP^{(i)}_t \) as defined in (1.9). Then, given any \(\varepsilon > 0 \), there exists \(C_\varepsilon \) such that for times \(t_n = (2\lambda)^{-1} \log n - C_\varepsilon \),

\[
\liminf_{n \to \infty} P(T_{12} > t_n, |A^{(1)}_n| = 0, |A^{(2)}_n| = 0) \geq 1 - \varepsilon.
\]

Note that if \(|A^{(i)}_n| = 0 \) then \(SWG^{(i)}_t = BP^{(i)}_t \) for all \(t \leq t_n \).

(c) For any fixed \(B \in \mathbb{R} \), let \(t^*_n = (2\lambda)^{-1} \log n + B \) and let \(t_n = T_{12} \wedge t^*_n \). Then the sequence of random variables \(|A^{(i)}_n| + |DA^{(i)}_n| \) is a tight sequence of random variables. Since the processes \((|A_t| + |DA_t|)_{0 \leq t \leq T_{12}} \) are monotonically increasing in \(t \), (2.20) implies that \(\sup_{t \leq t_n} (z_t^{(i)} - z_n^{(i)}(i)) \) is tight, and, as \(n \to \infty \),

\[
\sup_{t \leq t_n} \left| \frac{z_n^{(i)}(i)}{z_t^{(i)}} - 1 \right| \xrightarrow{p} 0.
\]

2.2. Analysis of the weight of the optimal path

Before proceeding to the main proposition in this section, we shall derive an important property of the above construction. When a vertex, say \(v \in [n] \), is born into one of the flow process (to fix ideas say into the flow cluster of vertex 1) at some time \(t \), then note that the edges it has at this time are
• edges to inactive artificial vertices.
• edges to all vertices in \([n] \setminus \text{SWG}_t\).

For any vertex \(v \in \text{SWG}_t^{(1)}\) and, for any vertex \(u \in [n]\) born into the flow cluster originating from vertex 2 at some later time \(s > t\), we say that the edge connecting \(v\) to \(u\) is assigned to vertex \(v\) and not to \(u\). Similarly, if vertex \(u\) is born into the flow cluster starting from 2 before vertex \(v\) which is born into flow cluster from vertex 1, then say that the edge \((u, v)\) is assigned to vertex \(u\) and not to \(v\).

For any vertex \(v \in \text{SWG}_t^{(1)}\) and, for any vertex \(u \in [n]\) born into the flow cluster originating from vertex 2 at some later time \(s > t\), we say that the edge connecting \(v\) to \(u\) is assigned to vertex \(v\) and not to \(u\). Similarly, if vertex \(u\) is born into the flow cluster starting from 2 before vertex \(v\) which is born into flow cluster from vertex 1, then say that the edge \((u, v)\) is assigned to vertex \(u\). Now, for any time \(t\) and any vertex \(v \in \text{SWG}_t^{(1)} \subseteq [n]\), let \(N_t(v)\) denote the number of edges with end points in \(\text{SWG}_t^{(2)}\) which are assigned to it. Similarly, if a vertex \(i \in \text{SWG}_t^{(2)}\), \(N_t(v)\) is the number of vertices in \(\text{SWG}_t^{(1)}\) assigned to it. Recall that our aim in sending the flow simultaneously is to analyze the collision time, namely, the first time when an edge, which we shall refer to as the connecting edge, forms between the two flow clusters. For any given time \(t\) and \(v \in \text{SWG}_t^{(i)}, i = 1, 2\), define the (random) set

\[
\mathcal{N}_t(v) = \{u \in \text{SWG}_t^{(3-i)}: \text{edge} (u, v) \text{ assigned to } v\}
\]

\[
= \{u \in \text{SWG}_t^{(3-i)}: T_u > T_v\},
\]

where, from now on, we shall use \(T_v\) to denote the time of birth of vertex \(v\) into the flow process \((\text{SWG}_t)_t \geq 0\) and we recall that \(\text{SWG}_t = \text{SWG}_t^{(1)} \cup \text{SWG}_t^{(2)}\).

The importance of these connecting edges is as follows: Fix some time \(t\) and vertices \(i \in \text{SWG}_t^{(1)}\) and \(j \in \text{SWG}_t^{(2)}\) with \(T_j > T_i\) so that the edge between them is assigned to vertex \(i\). Note that up till time \(T_j\), the flow was proceeding on the edge between them at rate 1 from vertex \(j\). Now at time \(T_j\) the flow has reached the edge from the opposite side (i.e., from vertex \(j\)) and is proceeding through the edge from both end points. Thus, while the flow through all other non-potential connecting edges proceeds at rate 1, the flow through this edge proceeds at rate 2. For any time \(x + T_j\), and using Lemma 2.1(b) with \(r = T_j - T_i\) and the fact that the flow now proceeds at rate 2 and not 1, the intensity function for the formation of this edge at this time is

\[
\lambda_{(i,j)}(x + T_j) = \frac{2}{s(n-1)}((T_j - T_i) + 2x)^{1/s-1}, \quad x \geq 0.
\]

In particular, for \(t \geq T_j\),

\[
\lambda_{(i,j)}(t) = \frac{2}{s(n-1)}((T_j - T_i) + 2(t - T_j))^{1/s-1}
\]

\[
= \frac{2}{s(n-1)}((t - T_i) + (t - T_j))^{1/s-1}.
\]

This fact leads to the following proposition.
PROPOSITION 2.3 (Collision time distribution). If T_{12} denotes the collision time, then with respect to the filtration generated by the flow process, T_{12} has the same distribution as the first point of a Poisson point process with rate function given by

$$\lambda_n(t) = \frac{2}{s(n-1)} \sum_{i \in \text{SWG}_1(i)} \sum_{j \in \text{SWG}_2(j)} ((t - T_j) + [t - T_i])^{1/s - 1}. \quad (2.27)$$

REMARK 2.4 (Extension to other graphs). Note that a similar formula as the above remains valid for any finite graph with i.i.d. E_e edge weights where E_e are exponential random variables, where the sum over $e = (i, j)$ is restricted to $(i, j) \in E_n$, that is, the sum is only taken over the edges of the graph. This can be used to analyze more general random graph models.

PROOF OF PROPOSITION 2.3. Using (2.25), Lemma 2.1 and the fact that for a finite number of independent Poisson point processes, the first point to occur in any of these processes has the same distribution as the first point in Poisson point process with rate given by the sum of rates of the corresponding point processes, we have that

$$\lambda_n(t) = 2 \sum_{i \in \text{SWG}_1(i)} \sum_{j \in \mathcal{N}_i(i)} \frac{([t - T_i] + [t - T_j])^{1/s - 1}}{s(n-1)} \quad (2.28)$$

where we recall that $\mathcal{N}_i(i)$ denotes the set of vertices in the other flow cluster assigned to i. Now note that for every pair of vertices $(i, j), i \in \text{SWG}_1(i), j \in \text{SWG}_2(j)$ either $i \in \mathcal{N}_i(j)$ or vice versa and only one of these facts can happen. Rearranging the above equation gives the result. □

We call the sum appearing in (2.27) a two-vertex characteristic. In Section 3.3 below, we shall prove the following result concerning the convergence of the two-vertex characteristic:

THEOREM 2.5 (Convergence of CTBP two-vertex characteristic). Consider two independent CTBPs $(\text{BP}_i(t))_{t \geq 0}, i = 1, 2$, as before. Let $W(i), i = 1, 2$, be the almost sure limits of $e^{-\lambda t} \xi_i^{(i)}$. Then,

$$e^{-2\lambda t} \sum_{i \in \text{BP}_1(i)} \sum_{j \in \text{BP}_2(j)} ([t - T_j] + [t - T_i])^{1/s - 1} \xrightarrow{\text{a.s.}} \lambda W^{(1)} W^{(2)}. \quad (2.29)$$

where $W(i)$ are the a.s. limits of $e^{-\lambda t} |\text{BP}_i(t)|$ and are i.i.d. with the same distribution as W in (1.7).
Now we are ready to prove Theorem 1.1.

Completion of the proof of Theorem 1.1. First, consider the rate function \(\lambda_n(t) \) of the collision time given in Proposition 2.3. By Proposition 2.2, in the summation arising in this rate function, we can replace the terms \(\text{SWG}_t^{(i)} \) by \(\text{BP}_t^{(i)} \) as the effect on the rate function is asymptotically negligible, where \(\text{BP}_t^{(i)} \) are the independent CTBPs that have been coupled with \(\text{SWG}_t^{(i)} \) to understand the optimal path on \(K_n \). Note that while the law of these CTBPs is independent of \(n \), their realizations intrinsically depend on \(n \), since we have used the randomization in \(K_n \) to construct the CTBPs. We will indicate this dependence by adding a subscript \(n \).

By (1.7),

\[
e^{-\lambda t} |\text{BP}_t^{(i)}| \overset{a.s.}{\longrightarrow} W_n^{(i)},
\]

where \(W_n^{(i)} \) are independent and identically distributed as the limit variable in (1.7).

Now, Theorem 2.5 implies that for any fixed \(B > 0 \)

\[
\sup_{x \in [-B,B]} \left| \lambda_n((2\lambda)^{-1} \log n + x) - \frac{2\lambda}{s} W_n^{(1)} W_n^{(2)} e^{2\lambda x} \right| \overset{P}{\longrightarrow} 0.
\]

Comparing the above with the definition of the Cox process in (1.10) completes the proof subject to Theorem 2.5. Theorem 2.5 is proved in Section 3.3. □

For future reference, we define the two-vertex characteristics \(\chi^{(i,j)}(t) \) by

\[
\chi^{(i,j)}(t) = ([t - T_j] + [t - T_i])^{1/s-1}.
\]

We shall now quickly prove the distributional equivalence (1.12).

Lemma 2.6 (The limit of the shortest weight). The first point \(\Xi^{(1)} \) of the Cox point process with rate \(\gamma(\cdot) \) as in (1.10) satisfies the distributional equivalence in (1.12).

Proof. Since \(\Xi^{(1)} \) is the first point of the Cox process with rate function \(\gamma \) in (1.10), we have for any fixed \(y \in \mathbb{R} \), conditional on \(W^{(1)}, W^{(2)} \),

\[
\mathbb{P}(\Xi^{(1)} > y \mid W^{(1)}, W^{(2)}) = \exp\left(-\int_{-\infty}^{y} \gamma(x) \, dx\right)
\]

\[
= \exp\left(-\frac{1}{s} W^{(1)} W^{(2)} e^{2\lambda y}\right),
\]

so that

\[
\mathbb{P}\left(\Xi^{(1)} > x - \frac{1}{2\lambda} \log \frac{W^{(1)} W^{(2)}}{s} \mid W^{(1)}, W^{(2)}\right) = \exp(-e^{2\lambda x})
\]

\[
= \mathbb{P}(G/(2\lambda) > y),
\]

where \(G \) has the standard Gumbel distribution. This proves the result. □
2.3. Hopcount analysis. As before, we let T_{12} be the collision time between the two flow clusters and suppose the collision happens via the formation of an edge (v_1, v_2) where $v_1 \in \text{SWG}_{T_{12}}^{(1)}$ and $v_2 \in \text{SWG}_{T_{12}}^{(2)}$. For $i = 1, 2$, let G_i denote the number of edges on the path from vertex i to G_i, so that the hopcount is given by

\[(2.35) \quad H_n = G_1 + G_2 + 1.\]

To prove Theorem 1.2 it suffices to show that, for every fixed $r, x, y \in \mathbb{R}$ and writing $t_n = (2\lambda)^{-1} \log n$,

\[(2.36) \quad \mathbb{P}(T_{12} \leq t_n + r, G_1 \leq \lambda st_n + xs\sqrt{\lambda t_n}, G_2 \leq \lambda st_n + ys\sqrt{\lambda t_n}) \rightarrow F_{12}(r)\Phi(x)\Phi(y),\]

where $F_{12}(\cdot)$ is the distribution of the random variable $\Xi^{(1)}$ appearing in Theorem 1.1 and $\Phi(\cdot)$ denotes the standard normal distribution function.

For fixed time t and $v \in \text{SWG}_{t}^{(i)}, i = 1, 2$, let $G(v)$ denote the number of edges in the optimal path between v and vertex i which started the flow. For any fixed $x \in \mathbb{R}$, let

\[(2.37) \quad \text{SWG}_{t}^{(i)}(x) = \{ v \in \text{SWG}_{t}^{(i)} : G(v) \leq \lambda st + xs\sqrt{\lambda t} \}.\]

By Proposition 2.3 and properties of a finite number of Poisson processes, we have, for any fixed t,

\[(2.38) \quad \mathbb{P}(T_{12} \in [t, t + dt), G_1 \leq \lambda st + xs\sqrt{\lambda t}, G_2 \leq \lambda st + ys\sqrt{\lambda t} \mid \text{SWG}_t) = \exp\left(- \int_{0}^{t} \lambda_n(w) \, dw \right) \frac{\sum_{i \in \text{SWG}_{t}^{(1)}} \sum_{j \in \text{SWG}_{t}^{(2)}} \chi_{ij}(t)}{\sum_{i \in \text{SWG}_{t}^{(1)}} \sum_{j \in \text{SWG}_{t}^{(2)}} \chi_{ij}(t)} dt,\]

where $\chi_{ij}(t)$ is the two-vertex characteristic defined in (2.32) and $\lambda_n(t)$ is the rate defined in (2.27). Thus, to complete the proof of (2.36), it is enough to show the following theorem.

Theorem 2.7 (CLT from two-vertex characteristic). The two-vertex characteristic satisfies the asymptotics, for $t \to \infty$,

\[(2.39) \quad \frac{\sum_{i \in \text{SWG}_{t}^{(1)}(x)} \sum_{j \in \text{SWG}_{t}^{(2)}(y)} \chi_{ij}(t)}{\sum_{i \in \text{SWG}_{t}^{(1)}} \sum_{j \in \text{SWG}_{t}^{(2)}} \chi_{ij}(t)} \to \mathbb{P}(\Phi(x)\Phi(y)).\]

Theorem 2.7 is proved in Section 3 and completes the proof subject to Theorem 2.7. In fact, together with Theorem 2.5, (2.38) proves the joint convergence of the length of the optimal path and the hopcount as remarked upon below Theorem 1.2, where the limits are independent.
3. Continuous-time branching process theory. In Sections 2.2–2.3, we have reduced the proof of our main results to the proof of Theorems 2.5 and 2.7. In this section, we prove Theorems 2.5 and 2.7. This section is organized as follows. In Section 3.1, we investigate properties of our CTBP. In Section 3.2, we investigate one-vertex characteristics. In Section 3.3, we analyze the two-vertex characteristic and prove Theorem 2.5. In Section 3.4, we compute the mean and variance of generation-weighted two-vertex characteristics, and in Section 3.5, we derive a CLT for the two-vertex characteristic and complete our proof of Theorem 2.7.

3.1. Intensities and limiting parameters for a single CTBP. We shall first state and prove various results that we shall require regarding a single branching process. Let BP be a continuous-time branching process driven by the offspring point process \[P \text{ i.e., the points given by } (L_1, L_2, \ldots) \text{ as in (1.5)} \] and let \(\mu \) denote the mean intensity measure of this point process, that is,

\[
\mu[0, t] = \mathbb{E}(\#\{i : L_i \leq t\}).
\]

Now,

\[
\mu[0, t] = \sum_{i=1}^{\infty} P(L_i \leq t) = \sum_{i=1}^{\infty} \int_{0}^{t^{1/s}} e^{-u^{i-1}/(i-1)!} du = \int_{0}^{t^{1/s}} 1 du = t^{1/s}.
\]

Define the Malthusian rate of growth \(\lambda = \lambda(s) \) as the unique positive constant such that the measure

\[
\nu(dt) = e^{-\lambda t^s} \mu(dt)
\]

is a probability measure. A simple computation shows that this is equivalent to (1.8). The following lemma collects some properties of this probability measure and the constant \(\lambda \).

Lemma 3.1 (Identification of limiting parameters CTBP).

(a) The constant \(\lambda = \lambda(s) \) is given by (1.9).

(b) The probability measure \(\nu(dt) \) is a Gamma distribution with density

\[
f(t) = \frac{\lambda^{1/s}}{\Gamma(1/s)} e^{-\lambda t^{1/s}}.
\]

(c) Let \(\beta_1 \) and \(\beta_2 \) denote the mean and the standard deviation of \(\nu \). Then

\[
\beta_1 = (s \lambda)^{-1}, \quad \beta_2 = (\sqrt{s} \lambda)^{-1}.
\]

(d) Let \(\mu^{*j} \) denote the \(j \)-fold convolution of the measure \(\mu \). Then

\[
\mu^{*j}(du) = \frac{u^{i-1/s-1} \lambda^{1/s} du}{\Gamma(j/s)}.
\]
Proof. To prove part (a), note that since the sum of i independent exponential random variables follows the gamma distribution, a simple computation gives that

$$1 = \sum_{i=1}^{\infty} \mathbb{E}(e^{-\lambda L_i}) = \sum_{i=1}^{\infty} \int_0^{\infty} e^{-\lambda t} e^{-t} \frac{t^{i-1}}{(i-1)!} dt$$

$$= \int_0^{\infty} e^{-\lambda t} e^{-t} \sum_{i=1}^{\infty} \frac{t^{i-1}}{(i-1)!} dt = \int_0^{\infty} e^{-\lambda t} dt$$

(3.7)

$$= \lambda^{-1/s} \int_0^{\infty} e^{-t^{s}} dt = \lambda^{-1/s} \int_0^{\infty} e^{-v^{1/s-1}} dv$$

$$= \lambda^{-1/s} \Gamma(1/s)/s = \lambda^{-1/s} \Gamma(1+1/s)$$

as required. Parts (b) and (c) are trivial. To prove part (d) note that, by (3.2) and [12], equation 4.634, we have

$$\mu^{*j}(du) = du s^{-j} \int_{u_1+\cdots+u_j=u} u_1^{1/s-1} \cdots u_j^{1/s-1} du_1 \cdots du_j$$

(3.8)

$$= \frac{u^{j/s-1} \Gamma(1/s) j}{\Gamma(j/s)} du = \frac{u^{j/s-1} \Gamma(1+1/s) j}{\Gamma(j/s)} du$$

3.2. Analysis of single-vertex characteristic. We first state a general theorem for single vertex characteristics of the CTBP. Consider a function $\chi: \mathbb{R}^+ \to \mathbb{R}^+$ which is continuous almost everywhere and which (a) increases at most polynomially quickly at ∞; and (b) is integrable with respect to the Lebesgue measure near zero. Let us call such functions regular single-vertex characteristics. For the branching process BP, call

$$z^{\chi}_t = \sum_{j \in \text{BP}_t} \chi(t-T_j)$$

the branching process counted according to characteristic χ. Branching processes counted by characteristics are some of the fundamental objects studied by Jagers and Nerman, see, for example, [15]. For example, taking $\chi(x) = 1$, we obtain $z^{\chi}_t = |\text{BP}_t|$, the size of the branching process at time t. In order to investigate the hopcount, we will need to analyze not just branching processes counted according to characteristics as above but also generation-weighted characteristics. Given a regular single vertex characteristic χ and any fixed $a \in \mathbb{R}$, define

$$z^{\chi}_t(a) = \sum_{j \in \text{BP}_t} a^{G(j)} \chi(t-T_j),$$

(3.10)

where, as before, T_j denotes the time of birth of vertex j, while $G(j)$ denotes the height or generation of vertex j. Given any characteristic χ, when we write
z_t^X without the argument a, we imply the branching process counted in the usual way as in (3.9), while when we have an argument a, namely $z_t^X(a)$, we refer to the branching process counted by a generation-weighted characteristic as in (3.10).

The following proposition is adapted from the general theory of CTBPs, see, for example, [14], Theorem 5.2.2, for part (a) (or see the nice treatment in [15], Theorem 3.4). We shall give a complete proof since branching processes counted by generation-weighted characteristics have not been previously analyzed. These constructions shall be crucial for us in order to prove the CLT for the hopcount.

Proposition 3.2 (Mean and co-variances of one-vertex characteristics). For regular deterministic single-vertex characteristics χ,

(a) the expectation $m_t^X(a) = \mathbb{E}[z_t^X(a)]$ satisfies

$$m_t^X(a) = \mathbb{E}[z_t^X(a)] = \int_0^t \chi(t - u) \sum_{j=0}^{\infty} a^j \mu^{*j}(du),$$

(b) the covariances between $z_t^{X_1}(a_1)$ and $z_t^{X_2}(a_2)$ satisfy

$$\text{Cov}(z_t^{X_1}(a_1), z_t^{X_2}(a_2)) = \int_0^t h_{a_1,a_2}(t - u) \tilde{\mu}_{a_1a_2}(du),$$

where $v \mapsto h_{a_1,a_2}(v)$ is the function

$$h_{a_1,a_2}(v) = \frac{a_1a_2}{s} \int_0^v u^{1/s - 1} m_{v-u}^{X_1}(a_1)m_{v-u}^{X_2}(a_2) du,$$

and we define the generation-weighted intensity measure $\tilde{\mu}_a$ by

$$\tilde{\mu}_a(du) = \sum_{j=0}^{\infty} a^j \mu^{*j}(du).$$

Proof. The proof of part (a) follows the same strategy as in [15], page 228, where the case $a = 1$ was proved. Indeed, there it is shown that the intensity measure for individuals in the kth generation equals μ^{*k}. Thus, with N^k denoting the set of individuals in generation k,

$$m_t^X(a) = \mathbb{E}[z_t^X(a)] = \sum_{k=0}^{\infty} a^k \mathbb{E}\left[\sum_{i \in N^k} \chi(t - T_i) \right]$$

$$= \int_0^t \chi(t - u) \sum_{k=0}^{\infty} a^k \mu^{*k}(du).$$

For part (b), we follow the identification of $\text{Var}(z_t^X)$ in [15], Theorem 3.2 and Corollary 3.3. We use the covariance partition

$$\text{Cov}(z_t^{X_1}(a_1), z_t^{X_2}(a_2)) = \text{Cov}(\mathbb{E}[z_t^{X_1}(a_1) \mid A_0], \mathbb{E}[z_t^{X_2}(a_2) \mid A_0])$$

$$+ \mathbb{E}[\text{Cov}(z_t^{X_1}(a_1), z_t^{X_2}(a_2)) \mid A_0],$$
where A_0 is the σ-algebra generated by the lives of the individuals in the first generation (the root is considered to be in generation zero). Then, the branching property of a CTBP gives that

$$z_t^X(a) = \chi(t) + a \sum_{j:G(j)=1} z_{t-T_j}^X(j; a),$$

where $((z_t^X(j; a_1), z_t^X(j; a_2)))_{j,t \geq 0}$ is, conditionally on A_0, a sequence of i.i.d. random processes with law $((z_t^X(a_1), z_t^X(a_2)))_{t \geq 0}$. Therefore,

$$\text{Cov}(z_t^X(a_1), z_t^X(a_2) \mid A_0) = a_1 a_2 \sum_{j:G(j)=1} C_{t-T_j}^{X_1,X_2}(a_1,a_2),$$

where we abbreviate

$$C_{t}^{X_1,X_2}(a_1,a_2) = \text{Cov}(z_t^X(a_1), z_t^X(a_2)).$$

Thus,

$$\mathbb{E}[\text{Cov}(z_t^X(a_1), z_t^X(a_2) \mid A_0)] = a_1 a_2 \int_0^t C_{t-u}^{X_1,X_2}(a_1,a_2) \mu(du).$$

Further,

$$\mathbb{E}[z_t^X(a) \mid A_0] = \chi(t) + a \int_0^t m_{t-u}(a) \mathcal{P}(du),$$

where $(\mathcal{P}(t))_{t \geq 0}$ is the intensity process of the first individual. Therefore, we arrive at

$$C_{t}^{X_1,X_2}(a_1,a_2) = h_{a_1,a_2}(t) + (a_1 a_2) \int_0^t C_{t-u}^{X_1,X_2}(a_1,a_2) \mu(du),$$

where

$$h_{a_1,a_2}(t) = a_1 a_2 \text{Cov}\left(\int_0^t m_{t-u}^X(a_1) \mathcal{P}(du), \int_0^t m_{t-u}^X(a_2) \mathcal{P}(du)\right).$$

Iterating this equation yields (3.12).

As before, for \mathcal{P} denoting the offspring distribution point process [given by (1.6)] and for every function $F : \mathbb{R} \rightarrow \mathbb{R}$, note that

$$\int_0^\infty F(x) \mathcal{P}(dx) \overset{d}{=} f(\Pi),$$

where Π is a rate 1 Poisson point process, $f(x) \equiv F(x^s)$ and where the function f applied to a point process Π is defined as $f(\Pi) \equiv \sum_{X \in \Pi} f(X)$. By properties of functionals of the Poisson point process, we have that

$$\text{Cov}\left(\int_0^t F_1(u) \mathcal{P}(du), \int_0^t F_2(u) \mathcal{P}(du)\right) = \int_0^{1/s} F_1(u^s) F_2(u^s) du$$

$$= s^{-1} \int_0^t u^{1/s-1} F_1(u) F_2(u) du.$$
Therefore, we obtain
\[h_{a_1,a_2}(t) = \frac{a_1a_2}{s} \int_0^t u^{1/s-1} m_{t-u}(a_1)m_{t-u}(a_2) \, du. \] (3.26)

□

The following proposition (adapted mainly from [15], Theorem 3.5) captures all we require to know about the asymptotics of the mean and variance of a single-vertex characteristic \(\chi \).

Proposition 3.3 (Asymptotics of mean and variance for one-vertex characteristics). For regular single vertex characteristics \(\chi \), and all \(a \geq 0 \),

(a) As \(t \to \infty \),
\[e^{-\lambda a^s t} \mathbb{E}(z_t^\chi(a)) \to a^s \lambda \int_0^\infty e^{-\lambda a^s y} \chi(y) \, dy. \] (3.27)

When \(a = a_t \to 1 \), then the convergence holds where in the right-hand side the value \(a = 1 \) is substituted.

(b) As \(t \to \infty \), when \(a_1, a_2 \geq 0 \) with \(a_1^s + a_2^s - a_1^s a_2^s > 0 \),
\[e^{-\lambda (a_1^s + a_2^s)} \text{Cov}(z_t^{\chi_1}(a_1), z_t^{\chi_2}(a_2)) \]
\[\to \frac{(a_1 a_2)^{2+s} \lambda^2 s^2}{(a_1^s + a_2^s)^{1/s} (a_1^s + a_2^s - a_1^s a_2^s)} \]
\[\times \int_0^\infty \chi_1(x) e^{-\lambda a_1^s x} \, dx \int_0^\infty \chi_2(x) e^{-\lambda a_2^s x} \, dx. \] (3.28)

When \(\vec{a} = \vec{a}_t \to (1, 1) \), then the convergence holds where in the right-hand sides the value \(\vec{a} = (1, 1) \) is substituted.

(c) With \(z_t = |BP_t| \), there exists a random variable \(W \) with \(W > 0 \) a.s. such that \(e^{-\lambda t} z_t^\chi \) converges almost surely and in \(L^2 \) to \(W \) and further, for any single-vertex regular characteristic,
\[e^{-\lambda t} z_t^\chi \xrightarrow{a.s.} W \lambda \int_0^\infty \chi(x) e^{-\lambda x} \, dx, \] (3.29)
and the convergence also holds in \(L^2 \).

Proof. Part (a) for \(a = 1 \) is [14], Theorem 5.2.8. For \(a \neq 1 \), we start from
\[m_t^\chi(a) = \int_0^t \chi(t-u) \sum_{k=0}^\infty a^k \mu^k(du) = \int_0^t \chi(t-u) \tilde{\mu}_a(du). \] (3.30)

Define the measure with density \(p_a(u) \, du \) via the equation \(e^{-\lambda a^s u} \tilde{\mu}_a(du) = p_a(u) \, du + e^{-\lambda a^s u} \delta_0(du) \), then we obtain
\[e^{-\lambda a^s t} m_t^\chi(a) = e^{-\lambda a^s t} \chi(t) + \int_0^t \chi(t-u) e^{-\lambda a^s (t-u)} p_a(u) \, du \]
\[= e^{-\lambda a^s t} \chi(t) + \int_0^t \chi(v) e^{-\lambda a^s v} p_a(t-v) \, dv. \] (3.31)
By Lemma A.1(a–b), we have that \(p_a(u) \) is uniformly bounded on \([1, \infty)\) and bounded by \(cu^{1/s-1} \) on \([0, 1]\), while and \(p_a(u) \to a^s \lambda_s \) when \(u \to \infty \). Thus, by dominated convergence,

\[
e^{-\lambda u^s} m_t^X(a) \to a^s \lambda_s \int_0^\infty \chi(v) e^{-\lambda v} \, dv.
\]

The proof when \(a_t \to 1 \) is identical.

See [15], Theorem 3.5, for parts (b) for \(a_1 = a_2 = 1 \) and for part (c). For the proof of part (b) for \((a_1, a_2) \neq (1, 1) \), we start with (3.12) and (3.13). By part (a), we have that

\[
e^{-\lambda (a_1^s + a_2^s) t} h_{a_1, a_2}^X(t)
= \frac{a_1 a_2}{s} \int_0^t u^{1/s-1} e^{-\lambda (a_1^s + a_2^s) u} (e^{-\lambda a_1^s (t-u)} m_{t-u}^X(a_1))
\times (e^{-\lambda a_2^s (t-u)} m_{t-u}^X(a_2)) \, du
\sim \frac{a_1 a_2}{s} M^{X_1}(a_1) M^{X_2}(a_2) \int_0^\infty u^{1/s-1} e^{-\lambda (a_1^s + a_2^s) u} \, du,
\]

where we define

\[
M^X(a) = a^s \lambda \int_0^\infty e^{-\lambda y a^s} \chi(y) \, dy.
\]

Further, note that, by (1.9),

\[
\int_0^\infty u^{1/s-1} e^{-\lambda (a_1^s + a_2^s) u} \, du = (a_1^s + a_2^s)^{-1/s} \lambda^{-1/s} \Gamma(1/s)
= s(a_1^s + a_2^s)^{-1/s}.
\]

Then we rewrite

\[
e^{-\lambda (a_1^s + a_2^s) t} \text{Cov}(z_{t}^{X_1}(a_1), z_{t}^{X_2}(a_2))
= \int_0^t e^{-\lambda (a_1^s + a_2^s) (t-u)} h_{a_1, a_2}^X(t-u) e^{-\lambda (a_1^s + a_2^s) u} \tilde{\mu}_{a_1 a_2}^X(du).
\]

Now, by (A.2), for \(u \) large,

\[
e^{-\lambda (a_1^s + a_2^s) u} \tilde{\mu}_{a_1 a_2}^X(du) \sim (a_1 a_2)^s \lambda s e^{-\lambda (a_1^s + a_2^s) u} \, du,
\]

which is integrable, so that substitution of this asymptotics in (3.12) and using dominated convergence, proves that

\[
e^{-\lambda (a_1^s + a_2^s) t} \text{Cov}(z_{t}^{X_1}(a_1), z_{t}^{X_2}(a_2))
\sim (a_1 a_2)^s \lambda s \int_0^\infty e^{-\lambda (a_1^s + a_2^s) u} \tilde{\mu}_{a_1 a_2}^X(du)
\sim (a_1 a_2)^s \lambda s (a_1^s + a_2^s)^{-1/s} \int_0^\infty e^{-\lambda (a_1^s + a_2^s) u} \tilde{\mu}_{a_1 a_2}^X(du)

\sim \frac{(a_1 a_2)^s}{(a_1^s + a_2^s)^{-1/s} (a_1^s + a_2^s-a_1^s a_2^s)^{-1/s}} M^{X_1}(a_1) M^{X_2}(a_2).
\]
since, by Lemma A.1,
\[\int_0^\infty e^{-\lambda b_1 u} \tilde{\mu}_{b_2}(du) = 1 + \int_0^\infty e^{-\lambda (b_1 - b_2^3) u} p_{b_2}(u) du \]
\[= 1 + \int_0^\infty b_2 e^{-\lambda (b_1 - b_2^3) u} p_1(ub_2) du \]
\[= 1 + \int_0^\infty e^{-\lambda b_2^3 (b_1 - b_2^3) u} p_1(u) du \]
\[= \int_0^\infty e^{-\lambda b_2^3 (b_1 - b_2^3) u} \mu(du) \]
\[= (b_2^{-s} (b_1 - b_2^3) \lambda)^{-1/s} \Gamma(1 + 1/s) \]
\[= b_2^2 (b_1 - b_2^3)^{-1/s} \]
by (3.7). This proves the claim when \(a_1^s + a_2^s - a_1^s a_2^s > 0 \). When \(\vec{a} = \vec{a}_t \to (1, 1) \), then the above asymptotics holds with \(\vec{a} = (1, 1) \) substituted on the right-hand side since (3.33) holds with \(\vec{a} = (1, 1) \) substituted on its right-hand side. \(\square \)

3.3. Almost sure convergence of two-vertex factor: Proof of Theorem 2.5. In this section, we prove Theorem 2.5. Throughout the proof, we shall abbreviate \(p = 1/s - 1 \). Note that, for any fixed \(0 < \varepsilon < B < \infty \), we can write \(z_t^{(1,2)} \) as
\[z_t^{(1,2)} = I_t^{(1)}(\varepsilon, B) + I_t^{(2)}(B) + I_t^{(3)}(\varepsilon), \]
where
\[I_t^{(1)}(\varepsilon, B) = \sum_{j \in \text{BP}_t^{(2)}: \varepsilon - T_j < B} \sum_{i \in \text{BP}_t^{(1)}} ([t - T_i] + [t - T_j])^p, \]
\[I_t^{(2)}(B) = \sum_{j \in \text{BP}_t^{(2)}: t - T_j > B} \sum_{i \in \text{BP}_t^{(1)}} ([t - T_i] + [t - T_j])^p, \]
\[I_t^{(3)}(\varepsilon) = \sum_{j \in \text{BP}_t^{(2)}: t - T_j < \varepsilon} \sum_{i \in \text{BP}_t^{(1)}} ([t - T_i] + [t - T_j])^p. \]
Thus to prove the result it is enough to show that for each fixed \(\varepsilon, B \) we have
\[e^{-2\lambda t} I_t^{(1)}(\varepsilon, B) \]
\[\to^{a.s.} W^{(1)} W^{(2)} \lambda^2 \int_\varepsilon^B \int_0^\infty (x_1 + x_2)^{1/s - 1} e^{-\lambda x_1} e^{-\lambda x_2} dx_1 dx_2, \]
\[\lim sup_{B \to \infty} \lim sup_{t \to \infty} e^{-2\lambda t} I_t^{(2)}(B) = 0 \quad \text{and} \]
\[\lim sup_{\varepsilon \to 0} \lim sup_{t \to \infty} e^{-2\lambda t} I_t^{(3)}(\varepsilon) = 0. \]
We shall start by proving (3.41). The following lemma shall be crucial in our proof.
LEMMA 3.4 (Sup convergence of characteristics). As \(t \to \infty \),
\[
\sup_{x \in [\varepsilon, B]} \left| e^{-\lambda t} \sum_{i \in \text{BP}_i^{(1)}} (x + [t - T_i])^p - W^{(1)} \int_{0}^{\infty} (x + y)^p e^{-\lambda y} \, dy \right| \xrightarrow{\text{a.s.}} 0,
\]
where \(W^{(1)} \) is the almost sure limit of \(e^{-\lambda t} z_t^{(1)} \).

PROOF. Consider the (random) functions
\[
f_t(x) = e^{-\lambda t} \sum_{i \in \text{BP}_i^{(1)}} (x + [t - T_i])^p, \quad x \in [\varepsilon, B].
\]
Note that for \(p < 0 \) these functions are monotonically decreasing, while for \(p > 0 \) they are increasing functions and they are all continuous when defined on the compact interval \([\varepsilon, B]\). Further, for each fixed \(x \in [\varepsilon, B] \), by Proposition 3.3(c), pointwise we have on a set of measure one,
\[
f_t(x) \xrightarrow{\text{a.s.}} W^{(1)} \int_{0}^{\infty} (x + y)^p e^{-\lambda y} \, dy.
\]
Thus, to show the a.s. sup convergence, by the Arzela–Ascoli theorem (see, e.g., [18]), it is enough to show that the above family of functions are a.s. equicontinuous, that is, for any \(x \in [\varepsilon, B] \) and any given \(\delta > 0 \) there exists \(\eta(x) > 0 \) independent of \(t \) such that for all \(t \):
\[
|f_t(x) - f_t(y)| < \delta \quad \text{for all } y \in [x - \eta(x), x + \eta(x)] \cap [\varepsilon, B].
\]
We separate between the cases \(p < 1 \) and \(p \geq 1 \).

Case 1: \(p < 1 \). In this case note that for any \(l_1, l_2 > 0 \) and \(a > 0 \), we have
\[
|(l_1 + a)^p - (l_2 + a)^p| = |p - 1| \int_{l_1}^{l_2} (x + a)^{p-1} \, dx
\]
\[
\leq |p - 1| \int_{l_1}^{l_2} x^{p-1} \, dx \quad \text{since } p - 1 < 0.
\]
By the continuity of the function \(g(x) = x^p \), for any \(x \in [\varepsilon, B] \) and \(\delta' > 0 \), we can choose \(\eta'(x) \) small such that for \(y \in [\varepsilon, B] \), \(|y - x| < \eta'(x) \) we have
\[
|x^p - y^p| < \delta'.
\]
This implies from (3.47) applied individually to the functions \(g_i(x) = (x + [t - T_i])^{1/s_i - 1} \) for \(i \in \text{BP}_i^{(1)} \) that
\[
|f_t(x) - f_t(y)| < \delta' e^{-\lambda t} z_t^{(1)},
\]
where we recall that \(z_t^{(1)} = |\text{BP}_i^{(1)}| \). Since \(e^{-\lambda t} z_t^{(1)} \) converges a.s. and \((e^{-\lambda t} z_t^{(1)})_{t \geq 0} \) is bounded a.s., we obtain that, on a set \(A \) of measure one, for each \(\omega \in A \), we can find a \(\kappa(\omega) \) depending on the sample point \(\omega \) but independent of \(t \), such that
\[
\sup_t e^{-\lambda t} z_t^{(1)}(\omega) < \kappa(\omega).
\]
Now choosing $\delta' = \delta / \kappa(\omega)$ gives us a $\eta(x) = \eta(x, \omega)$ such that (3.46) is satisfied. This proves the result for $p < 1$.

Case 2: $p \geq 1$. Here note that for any $a > 0$ and $x, y \in [\varepsilon, B]$, we have, by the mean value theorem

$$|(x + a)^p - (y + a)^p| = p(z + a)^{p-1}|y - x|, \quad a \in [x, y],$$

$$\leq p(B + a)^{p-1}|y - x|, \quad \text{since } p - 1 \geq 0.$$

This implies that, for $x, y \in [\varepsilon, B]$,

$$|f_t(x) - f_t(y)| < H_t|x - y|,$$

where, by Proposition 3.3(c),

$$H_t = e^{-\lambda t} \sum_{i \in \mathcal{B}_t^{(1)}} (B + [t - T_i])^{p-1}$$

$$\xrightarrow{a.s.} p W^{(1)} \int_{0}^{\infty} (B + y)^{p-1} \lambda e^{-\lambda y} dy.$$

This proves that (3.46) holds also when $p \geq 1$, and completes the proof of Lemma 3.4.

Completion of the proof of (3.41). Write

$$\mathcal{B}_t^{(2)}(\varepsilon, B) = \{ v \in \mathcal{B}_t^{(2)} : \varepsilon < t - T_j < B \}.$$

Then we have

$$\left| I_t^{(1)}(\varepsilon, B) - e^{-\lambda t} \sum_{j \in \mathcal{B}_t^{(2)}(\varepsilon, B)} W^{(1)} \int_{0}^{\infty} ([t - T_j] + y)^{1/s-1} \lambda e^{-\lambda y} dy \right|$$

$$\leq Q_1(t) e^{-\lambda t} z_t^{(2)},$$

where

$$Q_1(t) = \sup_{x \in [\varepsilon, B]} \left| e^{-\lambda t} \sum_{i \in \mathcal{B}_t^{(1)}} (x + [t - T_i])^{1/s-1} \right.$$

$$\left. - W^{(1)} \int_{0}^{\infty} (x + y)^{1/s-1} \lambda e^{-\lambda y} dy \right|.$$

Lemma 3.4 now implies that the term on the right-hand side of (3.52) converges to 0 a.s. Thus, to complete the proof, it is enough to show that

$$e^{-\lambda t} \sum_{j \in \mathcal{B}_t^{(2)}(\varepsilon, B)} W^{(1)} \int_{0}^{\infty} ([t - T_j] + y)^{p} \lambda e^{-\lambda y} dy$$

$$\xrightarrow{a.s.} W^{(1)} W^{(2)} \lambda^2 \int_{\varepsilon}^{B} \int_{0}^{\infty} (x_1 + x_2)^p e^{-\lambda(x_1 + x_2)} dx_1 dx_2.$$
This follows by taking the characteristic
\begin{equation}
\chi_2(a) = \begin{cases}
\int_0^\infty (a + x_2)^p e^{-\lambda x_2} \, dx_2, & \text{if } \varepsilon \leq a \leq B, \\
0, & \text{if } a \notin [\varepsilon, B]
\end{cases}
\end{equation}
and using Proposition 3.3(c) for the branching process \(BP_t^{(2)} \). \(\Box \)

Completion of the proof of (3.42). First, consider the term \(I_t^{(3)}(\varepsilon) \).

Note that
\begin{equation}
I_t^{(3)}(\varepsilon) \leq \left[z_1^{(2)} - z_2^{(2)} \right] \sum_{j \in BP_t^{(1)}} (\varepsilon + t - T_j)^p.
\end{equation}

By Proposition 3.3(c)
\begin{equation}
e^{-2\lambda t} \left[z_1^{(2)} - z_2^{(2)} \right] \sum_{j \in BP_t^{(1)}} (\varepsilon + t - T_j)^p \xrightarrow{a.s.} 0,
\end{equation}
when \(\varepsilon \downarrow 0 \). This proves the last convergence result in (3.42).

To prove the first convergence result in (3.42), note that arguing as in the proof of (3.41), we have for all \(p \) and \(x_1, x_2 > 0 \),
\begin{equation}
(x_1 + x_2)^p \leq (2^p \vee 1)(x_1^p + x_2^p),
\end{equation}
where \(a \vee b = \max\{a, b\} \). Thus,
\begin{equation}
I_t^{(2)}(B) \leq (2^p \vee 1)\left[z_1^{(1)} \chi_{B \rightarrow B}^{(1)} + z_2^{(1)} \chi_{B \rightarrow B}^{(2)} \right],
\end{equation}
where \(\chi_B(x) = (B + x)^p, \chi(x) = x^p \). Now again, by Proposition 3.3(c),
\begin{equation}
e^{-\lambda t} \left[z_1^{(1)} \chi_{B \rightarrow B}^{(1)} + z_2^{(1)} \chi_{B \rightarrow B}^{(2)} \right] \xrightarrow{a.s.} W^{(1)} W^{(2)} e^{-\lambda B} \left[\int_0^\infty \int_0^\infty e^{-\lambda x} (B + x)^p e^{-\lambda x} \, dx \, dy \right. \\
\left. + \int_0^\infty \int_0^\infty e^{-\lambda x} x^p e^{-\lambda x} \, dx \, dy \right],
\end{equation}
which converges a.s. to 0 when \(B \to \infty \). This completes the proof of (3.42). \(\Box \)

3.4. Mean and variance of two-vertex characteristic

In this section, we shall analyze two-vertex characteristics. This sets the stage for the proof of the asymptotics for the hopcount in Theorem 2.7. Define, for \(\tilde{a} = (a_1, a_2) \),
\begin{equation}
z^{(1,2)}_t(\tilde{a}) = \sum_{i \in BP_t^{(1)}} \sum_{j \in BP_t^{(2)}} a_1^{G^{(1)}(i)} a_2^{G^{(2)}(j)} ([t - T_i] + [t - T_j])^p,
\end{equation}
where we recall that \(G^{(i)}(v) \) is the generation of vertex \(v \in BP_t^{(i)} \).
Lemma 3.5 (Expectation and variance of two-vertex characteristics). Consider two independent CTBPs $\text{BP}_t^{(1)}$ and $\text{BP}_t^{(2)}$ driven by the offspring distribution \mathcal{P}. Then

(a)
\[
\mathbb{E}[z_t^{(1,2)}(\vec{a})] = \int_0^t \int_0^t (|t-v| + |t-u|)^p \tilde{\mu}_{a_1}(dv)\tilde{\mu}_{a_2}(du).
\]

(b)
\[
\text{Cov}(z_t^{(1,2)}(\vec{a}), z_t^{(1,2)}(\vec{b})) = \int_0^t h_{\vec{a},\vec{b}}^{(1)}(t-u, t)\tilde{\mu}_{a_2b_2}(du) + \int_0^t h_{\vec{a},\vec{b}}^{(2)}(t-u, t)\tilde{\mu}_{a_1b_1}(du),
\]

where
\[
h_{\vec{a},\vec{b}}^{(1)}(v, t) = \frac{a_2b_2}{s} \int_0^v \int_0^{v-u} \int_0^{v-u} \int_0^t \int_0^t up([t-u_2] + [v-u-u_1])^p \times ([t-v_2] + [v-u-v_1])^p \times \tilde{\mu}_{a_1}(du_1)\tilde{\mu}_{b_1}(dv_1)\tilde{\mu}_{a_2}(du_2) \times \tilde{\mu}_{b_2}(dv_2) \, du,
\]

\[
h_{\vec{a},\vec{b}}^{(2)}(v, t) = \frac{a_1b_1}{s} \int_0^v \int_0^{v-u} \int_0^{v-u} \int_0^t \int_0^t up([t-u_2] + [v-u-u_1])^p \times \tilde{\mu}_{a_1}(du_1)\tilde{\mu}_{b_1}(dv_1)\tilde{\mu}_{a_2}(du_2) \times \tilde{\mu}_{b_2}(dv_2) \, du,
\]

with $p = 1/s - 1$ and
\[
\tilde{\chi}_{t,r,a_2}^{(2)}(x) = \int_0^r (t-u_2 + x)^p \tilde{\mu}_{a_2}(du_2).
\]

Proof. We shall prove part (a) by conditioning on $\text{BP}_t^{(1)}$. Note we can write
\[
z_t^{(1,2)}(\vec{a}) = \tilde{\chi}_{t,a_1}^{(1)}(a_2),
\]

where
\[
\tilde{\chi}_{t,a_1}^{(1)}(x) = \sum_{j \in \text{BP}_t^{(1)}} a_1^{G_1(j)}(x + [t-T_j])^p.
\]

Conditionally on $\text{BP}_t^{(1)}$, the characteristic $\chi_{t,a_1}^{(1)}$ is deterministic. Therefore, Proposition 3.2(a) implies that
\[
\mathbb{E}(z_t^{(1,2)}(\vec{a}) \mid \text{BP}_t^{(1)}) = \sum_{j \in \text{BP}_t^{(1)}} a_1^{G_1(j)} \int_0^t ([t-u] + [t-T_j])^p \tilde{\mu}_{a_2}(du)
\]

\[
= \tilde{\chi}_{t,a_2}^{(2)}(a_1),
\]
where $\chi_{t,a_2}^{(2)}$ is the characteristic

$$
\chi_{t,a_2}^{(2)}(v) = \int_0^t (|t-u| + v)^p \tilde{\mu}_{a_2}(du).
$$

(3.68)

We complete the proof by noting that, for all r,

$$
m_r^{\chi_{t,a_2}^{(2)}}(a_1) = \mathbb{E}(\chi_{r,a_2}^{(2)}(a_1))
$$

(3.69)

$$
= \int_0^r \int_0^t (|r-v| + |t-u|)^p \tilde{\mu}_{a_1}(dv)\tilde{\mu}_{a_2}(du).
$$

Taking $r = t$ proves the claim in part (a).

For part (b), we again condition on $\text{BP}_t^{(1)}$, for which we use the covariance partition

$$
\text{Cov}(z_t^{(1,2)}(\tilde{a}), z_t^{(1,2)}(\tilde{b})) = \text{Cov}(\mathbb{E}(z_t^{(1,2)}(\tilde{a}) | \text{BP}_t^{(1)}), \mathbb{E}(z_t^{(1,2)}(\tilde{b}) | \text{BP}_t^{(1)}))
$$

(3.70)

$$
+ \mathbb{E}(\text{Cov}(z_t^{(1,2)}(\tilde{a}), z_t^{(1,2)}(\tilde{b}) | \text{BP}_t^{(1)})) = (I)_t + (II)_t.
$$

Let us now tackle each of these two terms separately.

Term $(I)_t$: For $(I)_t$, we use the explicit formula for $\mathbb{E}(z_t^{(1,2)}(\tilde{a}) | \text{BP}_t^{(1)})$ in (3.67) and $\chi_{t,a_2}^{(2)}$ in (3.68) to obtain that

$$
(I)_t = \text{Cov}(z_t^{(1,2)}(\tilde{a}), z_t^{(1,2)}(\tilde{b})).
$$

(3.71)

Now using Proposition 3.2(b), we get

$$
(I)_t = \int_0^t \int_0^t h_{\tilde{a},\tilde{b}}^{(1)}(t-u, t) \tilde{\mu}_{a_2b_2}(du),
$$

(3.72)

where $v \mapsto h_{\tilde{a},\tilde{b}}^{(1)}(v, t)$ is the function

$$
h_{\tilde{a},\tilde{b}}^{(1)}(v, t) = \frac{a_2b_2}{s} \int_0^v u^p m_{v-u}^{\chi_{t,a_2}^{(2)}}(a_1)m_{v-u}^{\chi_{t,b_2}^{(2)}}(b_1) du
$$

$$
= \frac{a_2b_2}{s} \int_0^v u^p \int_0^{v-u} \int_0^t \chi_{t,a_2}^{(2)}(v-u-u_1)\chi_{t,b_2}^{(2)}(v-u-v_1)
$$

$$
\times \tilde{\mu}_{a_1}(du_1)\tilde{\mu}_{b_1}(dv_1) du
$$

(3.73)

$$
= \frac{a_2b_2}{s} \int_0^v \int_0^{v-u} \int_0^t \int_0^t u^p ([t-u_2] + [v-u-v_1])^p
$$

$$
\times ([t-v_2] + [v-u-v_1])^p \tilde{\mu}_{a_1}(du_1)
$$

$$
\times \tilde{\mu}_{b_1}(dv_1)\tilde{\mu}_{a_2}(du_2)\tilde{\mu}_{b_2}(dv_2) du.
$$
Term $(II)_t$: We again use that, conditionally on $\text{BP}_t^{(1)}$, $z_t^{(1,2)}(\vec{a}) = z_t^{\chi, a_1^{(1)}, a_2}(a_2)$, where $\chi^{a_1^{(1)}}$ was defined in (3.66). Therefore, we can again use Proposition 3.2(b) to write

$$\text{Cov}(z_t^{(1,2)}(\vec{a}), z_t^{(1,2)}(\vec{b}) | \text{BP}_t^{(1)}) = \int_0^t g_{\vec{a}, \vec{b}}(t - u, t) \tilde{\mu}_{a_2 b_2}(du),$$

where

$$g_{\vec{a}, \vec{b}}(v, t) = \frac{a_2 b_2}{s} \int_0^v u^p m_{v-u}^{\chi, a_1^{(1)}}(a_2) m_{v-u}^{\chi, a_1^{(1)}}(b_1)(b_2) du.$$

Therefore,

$$(II)_t = \int_0^t h_{\vec{a}, \vec{b}}^{(2)}(t - u, t) \tilde{\mu}_{a_2 b_2}(du),$$

where

$$h_{\vec{a}, \vec{b}}^{(2)}(v, t) = \frac{a_2 b_2}{s} \int_0^v u^p \mathbb{E}[m_{v-u}^{\chi, a_1^{(1)}}(a_2) m_{v-u}^{\chi, a_1^{(1)}}(b_1)(b_2)] du.$$

We can now rewrite

$$m_{\chi, a_1^{(1)}}^{(1)}(a_2) = \int_0^r \sum_{j \in \text{BP}_t^{(1)}} a_1^{G^{(1)}}(j) (t - u_2 + t - T_j)^p \tilde{\mu}_{a_2}(du_2)$$

$$= \sum_{j \in \text{BP}_t^{(1)}} a_1^{G^{(1)}}(j) \int_0^r (t - u_2 + t - T_j)^p \tilde{\mu}_{a_2}(du_2)$$

$$= \tilde{z}^{(2)}_{\chi, t, a_2}(1)(a_1),$$

where

$$\tilde{z}^{(2)}_{\chi, t, a_2}(x) = \int_0^r (t - u_2 + x)^p \tilde{\mu}_{a_2}(du_2).$$

This completes the proof. □

Lemma 3.6 (Asymptotics of mean and variance of two-vertex characteristics). Consider two independent CTBPs $\text{BP}_t^{(1)}$ and $\text{BP}_t^{(2)}$ driven by the offspring distribution \mathcal{P}. Then

(a)

$$e^{-\lambda(a_1^{(1)} + a_2^{(1)}) t} \mathbb{E}(z_t^{(1,2)}(\vec{a}))$$

$$\to (\lambda s)^2 \int_0^\infty \int_0^\infty (x_1 + x_2)^p e^{-\lambda(a_1^{(1)} + a_2^{(1)})} dx_1 dx_2.$$

When $\vec{a} = \vec{a}_t \to (1, 1)$, then the convergence holds where in the right-hand sides the value $\vec{a} = (1, 1)$ is substituted.
(b) When $a_1^s + a_2^s - a_1^a a_2^s > 0$ and $b_1^s + b_2^s - b_1^a b_2^s > 0$, there exists a constant $A_{\text{Cov}}(\vec{a}, \vec{b})$ such that

$$e^{-\lambda[(a_1^s + a_2^s) + (b_1^s + b_2^s)]t} \text{Cov}(\chi_{(1,2)}(\vec{a}), \chi_{(1,2)}(\vec{b})) \to A_{\text{Cov}}(\vec{a}, \vec{b}).$$

(3.81) When $\vec{a} = \vec{a}_t \to (1, 1), \vec{b} = \vec{b}_t \to (1, 1)$, then the convergence holds where the right-hand side is replaced with $A_{\text{Cov}}(\vec{a}, \vec{b})$.

Proof. By Lemma 3.5(a),

$$e^{-\lambda(a_1^s + a_2^s)t} \text{E}(\chi_{(1,2)}(\vec{a}))$$

$$= e^{-\lambda(a_1^s + a_2^s)t} \int_0^t \int_0^t ([t - u] + [t - v])^{1/s-1} \bar{\mu}_{a_1}(du) \bar{\mu}_{a_2}(dv)$$

(3.82) $$= \int_0^t \int_0^t e^{-\lambda[a_1^s(t-u)+a_2^s(t-v)]} ([t - u] + [t - v])^{1/s-1} p_{a_1}(u) p_{a_2}(v) du dv$$

$$+ o(1)$$

$$= \int_0^t \int_0^t e^{-\lambda[a_1^u+a_2^v]}(u + v)^{1/s-1} p_{a_1}(t-u) p_{a_2}(t-v) du dv + o(1),$$

where the $o(1)$ originates from part $\delta_{u,0}(du)$ in the decomposition $e^{-\lambda a^u} \bar{\mu}_a (du) = p_a(u) du + e^{-\lambda a^u} \delta_0(du)$, and $\delta_{u,0}$ is the Dirac measure at $u = 0$. Now we again use Lemma A.1(a) and (b) together with dominated convergence to obtain the claim in part (a). The proof of part (b) is similar, and we omit the details. \(\Box\)

3.5. CLT for two-vertex characteristic: Proof of Theorem 2.7. In this section, we use and extend the theory developed in the previous section to prove Theorem 2.7. The plan is as follows: We shall start by proving the result for the CTBP in the summation instead of SWG\(_t^{(i)}\) and then argue that the difference is negligible. The result is formulated as follows.

Theorem 3.7 (CLT for two-vertex characteristic for CTBP). The two-vertex characteristic satisfies that, as $t \to \infty$,

$$\frac{\sum_{i \in \text{BP}^{(1)}} \chi_{ii}(t)}{\sum_{i \in \text{BP}^{(1)}} \chi_{ij}(t)} \to \Phi(x) \Phi(y).$$

(3.83)

Proof. Theorem 3.7 follows when we show that, writing $\vec{a}_t = (e^{a_1/\sqrt{s}}, e^{a_2/\sqrt{s}}, \sqrt{\lambda t})$, for some vector $\vec{a} = (a_1, a_2)$,

$$\frac{\chi_{(1,2)}(\vec{a}_t)e^{-(\alpha_1+\alpha_2)\sqrt{\lambda t}}}{\chi_{(1,2)}(\vec{a}_t)} \to e^{\alpha_1^2/2+\alpha_2^2/2}.$$
Indeed, define the (random) measure P on pairs (X, Y) by
\begin{equation}
P(X \leq x, Y \leq y) = \frac{\sum_{i \in B_{t}^{1}(x)} \sum_{j \in B_{t}^{2}(y)} \chi_{ij}(t)}{\sum_{i \in B_{t}^{1}} \sum_{j \in B_{t}^{2}} \chi_{ij}(t)}.
\end{equation}

Then, (3.83) states that the pair (X, Y) converges in distribution to a pair of independent standard normal distributions, which, in turn, follows when, for each $(\alpha_{1}, \alpha_{2}) \in \mathbb{R}$, we have that
\begin{equation}
E[e^{\alpha_{1}X + \alpha_{2}Y}] =
\frac{\sum_{i \in B_{t}^{1}(1, 2)} \chi_{i}^{(1, 2)}(t) e^{-\alpha_{1} + \alpha_{2}} \sqrt{\lambda t}}{\sum_{i \in B_{t}^{1}(1, 2)} \chi_{i}^{(1, 2)}(t)} \overset{p}{\longrightarrow} e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2},
\end{equation}
where E denotes the expectation w.r.t. P.

In order to show (3.84), we show that
\begin{equation}
e^{-2\lambda t} \left(z_{t}^{(1, 2)}(\tilde{\alpha}_{t}) e^{-(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} - e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} z_{t}^{(1, 2)} \right) \overset{p}{\longrightarrow} 0.
\end{equation}
Together with Theorem 2.5, this then implies the result, as $e^{-2\lambda t} z_{t}^{(1, 2)}$ converges a.s. to a strictly positive random variable. Thus, we are left to prove (3.87). We shall show that the convergence in (3.87) in fact holds in L^{2}. For this, it is immediate that it suffices to study
\begin{equation}
M_{t}(\tilde{\alpha}) \equiv E\left[z_{t}^{(1, 2)}(\tilde{\alpha}_{t}) e^{-(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} - e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} z_{t}^{(1, 2)} \right],
\end{equation}
\begin{equation}
Q_{t}(\tilde{\alpha}) \equiv \text{Var}(z_{t}^{(1, 2)}(\tilde{\alpha}_{t})), \quad C_{t}(\tilde{\alpha}) \equiv \text{Cov}(z_{t}^{(1, 2)}, z_{t}^{(1, 2)}(\tilde{\alpha}_{t})).
\end{equation}

In terms of these quantities, we can rewrite
\begin{equation}
\begin{aligned}
E\left[\left(z_{t}^{(1, 2)}(\tilde{\alpha}_{t}) e^{-(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} - e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} z_{t}^{(1, 2)} \right)^{2} \right] \\
= M_{t}(\tilde{\alpha})^{2} + Q_{t}(\tilde{\alpha}) e^{-2(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} + e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} Q_{t}(\tilde{0}) \\
- 2C_{t}(\tilde{\alpha}) e^{-(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2}.
\end{aligned}
\end{equation}
Therefore, we shall prove that
\begin{equation}
e^{-2\lambda t} M_{t}(\tilde{\alpha}) = o(1)
\end{equation}
and
\begin{equation}
e^{-4\lambda t} \left(Q_{t}(\tilde{\alpha}) e^{-2(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} + e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} Q_{t}(\tilde{0}) \right) \\
- 2C_{t}(\tilde{\alpha}) e^{-(\alpha_{1} + \alpha_{2}) \sqrt{\lambda t}} e^{\alpha_{1}^{2}/2 + \alpha_{2}^{2}/2} = o(1).
\end{equation}
For these proofs, the explicit computations of mean and covariances of $z_{t}^{(1, 2)}(\tilde{\alpha}_{t})$ and $z_{t}^{(1, 2)} = z_{t}^{(1, 2)}(1, 1)$ are crucial.
To prove (3.91), we rewrite
\[
e^{-2\lambda t} M_t(\tilde{\alpha}) = e^{(\alpha_1^2 + \alpha_2^2)\lambda t - 2\lambda t - (\alpha_1 + \alpha_2)\sqrt{\lambda t}} e^{-\lambda(\alpha_1^3 + \alpha_2^3)t} E(z_t^{(1,2)}(\tilde{\alpha}))
\]
(3.93)
\[= e^{\alpha_2^2/2 + \alpha_2^2/2} e^{-2\lambda t E(z_t^{(1,2)}(\tilde{\alpha}))}.
\]
Since \(\tilde{\alpha}_t = (e^{\alpha_1/\sqrt{\lambda t}}, e^{\alpha_2/\sqrt{\lambda t}}) \to (1, 1),
\]
(3.94)
e^{-2\lambda t E(z_t^{(1,2)}(\tilde{\alpha}))} \to A, \quad e^{-\lambda(\alpha_1^3 + \alpha_2^3)t} E(z_t^{(1,2)}(\tilde{\alpha})) \to A,
where \(A\) is the limit in (3.80) in Lemma 3.6(a). By a second order Taylor expansion,
\[
(\alpha_1^3 \lambda t - \lambda t - \alpha_1 \sqrt{\lambda t}) = \lambda t \left(e^{\alpha_1/\sqrt{\lambda t}} - 1 - \frac{\alpha_1}{\sqrt{\lambda t}} \right) = \alpha_1^2/2 + o(1).
\]
Together, these two asymptotics show that (3.91) holds. The proof of (3.92) is identical, now using Lemma 3.6(b) instead, and the fact that the limit equals \(A_{\text{Cov}}(1, 1)\) for all contributions, since \(\tilde{\alpha}_t \to (1, 1). \quad \square

Completion of the proof of Theorem 2.7. We can bound
\[
\left| \frac{\sum_{i \in \text{SWG}_t^{(1)}} \sum_{j \in \text{SWG}_t^{(2)}} X_{ij}(t)}{\sum_{i \in \text{SWG}_t^{(1)}} \sum_{j \in \text{SWG}_t^{(2)}} X_{ij}(t)} - \frac{\sum_{i \in \text{BP}_t^{(1)}} \sum_{j \in \text{BP}_t^{(2)}} X_{ij}(t)}{\sum_{i \in \text{BP}_t^{(1)}} \sum_{j \in \text{BP}_t^{(2)}} X_{ij}(t)} \right| \leq 2 \frac{e^{-2\lambda t} \sum_{i \in \text{BP}_t^{(1)}} \sum_{j \in \text{BP}_t^{(2)}} X_{ij}(t) - e^{-2\lambda t} \sum_{i \in \text{SWG}_t^{(1)}} \sum_{j \in \text{SWG}_t^{(2)}} X_{ij}(t)}{e^{-2\lambda t} \sum_{i \in \text{BP}_t^{(1)}} \sum_{j \in \text{BP}_t^{(2)}} X_{ij}(t)}.
\]
(3.96)
The random variable in the denominator converges in probability to \(\kappa W^{(1)} W^{(2)} > 0\) by Theorem 2.5, so that it suffices to prove that the numerator converges to 0 in probability.

Denote
\[
z_t^{n,(1,2)} = \sum_{i \in \text{SWG}_t^{(1)}} \sum_{j \in \text{SWG}_t^{(2)}} X_{ij}(t).
\]
(3.97)
Then, similarly to Proposition 2.2(c), and recalling that \(t_n = T_{12} \wedge t_n^*\) where \(t_n^* = (2\lambda)^{-1} \log n + B\) for some \(B > 0\), we obtain that \(\sup_{t \leq t_n} (z_t^{n,(1,2)} - z_t^{(1,2)})\) is tight. From Theorem 1.1 (whose proof has been completed since it relies only on Theorem 2.5, which was proved in the previous section), we know that the collision time \(T_{12}\) is bounded by \(t_n^*\) with probability \(1 - o(1)\) as \(B \uparrow \infty\). Therefore,
\[
e^{-2\lambda t} \sum_{i \in \text{BP}_t^{(1)}} \sum_{j \in \text{BP}_t^{(2)}} X_{ij}(t) - e^{-2\lambda t} \sum_{i \in \text{SWG}_t^{(1)}} \sum_{j \in \text{SWG}_t^{(2)}} X_{ij}(t)
\]
\[= e^{-2\lambda t} (z_t^{n,(1,2)} - z_t^{(1,2)}) \overset{p}{\longrightarrow} 0.
\]
(3.98)
This completes the proof. \(\square\)
In this section, we prove an auxiliary result on the asymptotics of the measure
\[\tilde{\mu}_a(du) = \sum_{j=0}^{\infty} a^j \mu^j(du). \]

LEMMA A.1 (Asymptotics of density of \(\tilde{\mu}_a \)).

(a) Let
\[
e^{-\lambda a^s u} \sum_{j=1}^{\infty} a^j \mu^j(du) \equiv p_a(u) du.
\]
Then, for \(u \in [0, 1] \), there exists a constant \(c \) such that \(p_a(u) \leq cu^{1/s-1} \), while, for \(u \geq 1 \), \(p_a(u) \) is bounded and as \(u \rightarrow \infty \),
\[
p_1(u) \rightarrow \lambda s.
\]

(b) The following scaling identity holds:
\[
p_a(u) = a^s p_1(ua^s).
\]
In particular, when \(au \rightarrow 1 \),
\[
p_{au}(u) \rightarrow \lambda s.
\]

PROOF. By (3.6), we have
\[
p_a(u) = e^{-\lambda a^s u} \sum_{j=1}^{\infty} a^j u^{j/s-1} \frac{\lambda^j/\sqrt{s} e^{j/s} (j/s)^{j/s}}{\Gamma(j/s)}.
\]
This form immediately proves the identity in (A.3), and therefore also (A.4) follows from (A.2). Also, this form immediately shows that \(p_a(u) \leq cu^{1/s-1} \) for \(u \in [0, 1] \). Thus, we are left to prove (A.2).

By [12], equation 8.327, we have that, as \(z \rightarrow \infty \),
\[
z^{z-1/2} e^{-z} \sqrt{2\pi} \leq \Gamma(z) \leq z^{z-1/2} e^{-z} \sqrt{2\pi} \left(1 + \frac{1}{12z}\right).
\]
Therefore,
\[
p_1(u) = (1 + o(1)) e^{-\lambda u} \sum_{j=1}^{\infty} \frac{1}{\sqrt{2\pi s/j}} u^{j/s-1} \lambda^{j/s} e^{j/s} (j/s)^{j/s}.
\]

(A.7)

where the error term converges to 0 as \(u \rightarrow \infty \). Note that the right-hand side is a function of \(\lambda u \), so that it suffices to prove that
\[
q(v) = e^{-v} v^{-1} \sum_{j=1}^{\infty} \frac{1}{\sqrt{2\pi j}} e^{j/s \log(vse/j)} \rightarrow s.
\]

(A.8)
For this, we note that $j \mapsto e^{i/s \log(vse/j)}$ is maximal when $j = sv$, where it takes the value e^v. A second order Taylor expansion shows that when $j - sv = x$, we have

\begin{equation}
 e^{i/s \log(vse/j)} = e^v e^{-x^2/(2sv)}(1 + o(1)).
\end{equation}

Performing the approximate Gaussian sum leads to the claim in (A.8). □

Acknowledgments. Shankar Bhamidi would also like to thank the hospitality of EURANDOM where much of this work was done. We would like to thank Jesse Goodman and Maren Eckhoff for many helpful discussions.

REFERENCES

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH
UNIVERSITY OF NORTH CAROLINA
304 HANES HALL
CHAPEL HILL, NORTH CAROLINA 27599
USA
E-MAIL: bhamidi@email.unc.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
EINDHOVEN UNIVERSITY OF TECHNOLOGY
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS
E-MAIL: rhofstad@win.tue.nl