Development of active-passive regrowth for butt-coupled lasers in membrane photonic integrated circuits

Citation for published version (APA):

Document status and date:
Published: 19/05/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Aug. 2020
Development of active-passive regrowth for butt-coupled lasers in membrane photonic integrated circuits

Vadim POGORETSKIY*, Aura HIGUERA-RODRIGUEZ, Yuqing JIAO, Rene P.J. van VELDHOVEN, Jos J.G.M van der TOL, Dominik HEISS, Meint K. SMIT
COBRA Research Institute, Technische Universiteit Eindhoven
De Zaale, Eindhoven, 5600 MB, The Netherlands
* v.pogoretskiy@tue.nl

Introduction: Photonic integration on membranes can be used to combine electronic and optical functionality. An InP membrane on Si (IMOS) [1] is an advantageous solution, since it can include lasers, detectors and waveguide devices. In order to scale down the footprint of active devices such as photonic crystal nanolasers (Fig. 1a.), active passive regrowth is necessary. This paper reports on the design of the active layer stack and development of an active-passive regrowth process for integrated active devices which are butt-coupled to membrane waveguides. A first realized structure with this technique is shown in Fig. 1b.

Fig. 1. (a) Schematic of a laser butt-coupled to a waveguide; (b) SEM image of a realized structure.

Active layer stack design: Electrical and optical confinement is provided by a double heterostructure with bulk InGaAs or InGaAsP as the active layer and doped InP as a barrier layer. We use bulk material in order to provide higher gain in small devices when cavity losses are large and high injection currents are necessary (Fig. 2a.). We carefully choose doping levels and thicknesses in order to make a tradeoff between technology and SOA performance. On the one hand, we need to isolate optically the active region and reduce cladding doping levels in order to reduce the internal loss of the SOA. On the other hand, we cannot afford a total thickness higher than 1 µm to perform high quality dry etching using a thin hard mask. Moreover, a thin layerstack and high doping of the cladding will minimize the series resistance of the device. Apart from that we need to include several sacrificial and etch stop layers (green in Fig.3a) in order to make successful regrowth possible. Optimized layer stack parameters are presented in Fig. 3a. Fig. 3b. shows the optical mode distribution in a designed layer stack. Fig. 3c. depicts loss and mode confinement dependence on SOA width for a chosen layerstack. In order to avoid multimode behavior we have to stay below 1 µm SOA width where we expect high loss and a low confinement factor. Thus, choosing an optimal layerstack is very important for a butt-coupled membrane integrated platform.
Active-passive regrowth: Using MOCVD we first grow the active layer stack on top of a (100)-InP wafer. Then, we pattern active areas with 30 µm width and various length with optical lithography and apply a combination of dry and wet etching to remove etch stop layer and obtain atomic flat surface which will reduce loss in passive parts of the circuit. Finally, we regrow a 300 nm thick InP infill layer for the passive regions of the chip. On the active regions a 200 nm thick Si$_x$N$_y$ mask prevents further growth. We characterize the regrowth with cross-sectional SEM images as shown in Fig. 3. As a result of the wet etching process the (011) and (011) facets are shaped differently, typically characterized as dove tail and V-groove facets [2]. In the cross-sectional SEM we observed a gap (Fig. 3c) for the V-groove facet. This facet of the InGaAs compound does not allow InP to nucleate on its surface, thus creating the gap, which prevents light coupling. The dove tail facet, on the other hand, provides a homogeneous interface suitable for active-passive coupling, as shown in Fig. 3b.

Conclusion: In this work we have presented the successful active-passive regrowth for fabrication of small footprint membrane photonic integrated devices. Active passive regrowth allows us to fabricate lasers with a footprint below 30 µm2. Fabrication of the butt-coupled lasers is currently ongoing. During the conference we will show more results of the fabricated devices.

References