Crystalline silicon surface passivation by the negative-charge-dielectric Al2O3

Citation for published version (APA):

DOI:
10.1109/PVSC.2008.4922635

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
CRYSTALLINE SILICON SURFACE PASSIVATION BY THE NEGATIVE-CHARGE-DIELECTRIC Al₂O₃

B. Hoex¹, J. Schmidt², M.C.M. van de Sanden¹, and W.M.M. Kessels¹
¹Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven
²Institut für Solarenergieforschung Hameln (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany

ABSTRACT

In this contribution it will be demonstrated that Al₂O₃ films synthesized by plasma-assisted atomic layer deposition are a very interesting low temperature solution for the passivation of highly and lowly doped p-type c-Si and lightly doped n-type c-Si. From experiments it will be shown that the excellent surface passivation by Al₂O₃ can for a large part be attributed to a high fixed negative charge density in the film on the film-substrate interface. The implications of this high fixed negative charge density on the surface passivation of both n- and p-type c-Si will be addressed.

INTRODUCTION

Surface passivation of crystalline silicon (c-Si) is becoming increasingly important for the performance of c-Si solar cells. Surface passivation is not only requisite for high efficiency solar cells. Surface passivation is, moreover, becoming vital for all solar cells based on c-Si as the cost-driven reduction of the solar cell thickness is increasing the surface-to-volume ratio.

Thin films (typically 20-80 nm) of thermal silicon dioxide (SiO₂), silicon nitride (a-SiNx:H) and amorphous silicon (a-Si:H) are currently used for surface passivation of c-Si solar cells in industry. A material that has recently regained interest for the passivation of c-Si is aluminum oxide (Al₂O₃). In the late eighties Al₂O₃ was already applied for c-Si surface passivation in a metal-insulator-semiconductor (MIS) solar cell by Hezel and Jaeger.[1] They demonstrated that Al₂O₃ could provide a reasonable level of surface passivation with an effective surface recombination velocity of ~200 cm/s on 2 Ω cm p-type c-Si. More recently Agostinelli et al. demonstrated that Al₂O₃ grown by atomic layer deposition (ALD) could provide an excellent level of surface passivation on p-type c-Si.[2]

In this contribution we will demonstrate that Al₂O₃ deposited by plasma-assisted ALD[3,4] yields a state-of-the-art level of surface passivation on various c-Si surfaces. Moreover, we will address the c-Si surface passivation mechanism of Al₂O₃ and show that this underlying mechanism makes Al₂O₃ a particularly interesting candidate for the passivation of p-type c-Si with an arbitrary doping level. This also includes the passivation of p-type emitters which has been found challenging so far.

EXPERIMENTAL

Al₂O₃ films with a thickness of 7-30 nm were grown in a commercial (Oxford Instruments, FlexAL) and home-built PA-ALD reactor (ALD-I) at a substrate temperature of 200 °C. The films were prepared by alternating trimethylaluminium (TMA) exposure and a remote O₂ plasma. The film growth was monitored by means of in situ spectroscopic ellipsometry (250-1000 nm range) and revealed a growth rate in the 1.2 Å per cycle. The surface passivation was tested by depositing identical Al₂O₃ films on both sides of low resistivity c-Si substrates with various doping concentrations and dopant types. The substrates received a standard RCA clean with final HF dip prior to deposition to remove the native oxide. After deposition, the lifetime samples were annealed in a N₂ environment for 30 minutes at 425 °C in a rapid thermal anneal furnace. The effective lifetime τeff was measured using a lifetime tester (Sinton WCT-100) in both the quasi steady state and transient mode.[5] The level of surface passivation is quantified by the effective surface recombination velocity. Assuming an infinite bulk lifetime, the upper limit of the effective surface recombination velocity Seff can be calculated by:

\[
S_{eff} \leq \frac{W}{2 \cdot \tau_{eff}}
\]

with W the substrate thickness.

In Fig. 1 the effective lifetime is shown for low resistivity n-type c-Si passivated by Al₂O₃ films with a thickness of 7-30 nm as determined from photoconductance measurements.[5] Effective lifetimes in excess of 6 ms were measured indicating a surface recombination velocity $S_{eff,max}$ of 2 cm/s assuming an infinite bulk lifetime. These values are comparable to the best values published for annealed thermal SiO₂.[6] A 7 nm thick Al₂O₃ still yields a $S_{eff,max}$ of 5 cm/s.
Figure 1: Effective lifetime as a function of the excess carrier density for low resistivity n-type (275 μm, <100>, 1.9 Ω cm) float zone c-Si substrate passivated with a 30, 15 and 7 nm thick Al₂O₃ film.[7]

In Fig. 2 the effective lifetime is shown for a 2 Ω cm p-type wafer passivated by a 10 and 30 nm Al₂O₃ film. Effective lifetimes in excess of 3 ms were measured, corresponding to a S_{eff,max} of 5 cm/s. In Fig. 3 the combined S_{eff,max} values are shown for p-type c-Si with various doping concentrations passivated by Al₂O₃. Literature values obtained by thermal SiO₂ (either forming gas annealed or annealed), as deposited a-SiNx:H and a-Si:H are included for comparison. The values for a B-doping concentration > 10^{18} cm^{-3} were extracted from the measured emitter saturation current density on B-doped p-type emitters as discussed in detail in a separate publication.[8] The effective surface recombination values for lightly B-doped c-Si were calculated assuming an infinite bulk lifetime and using the best values published in the studies of Kerr et al. [6,9,10] and Dauwe et al.[9]

Figure 3 clearly demonstrates that Al₂O₃ provides a state-the-art level of surface passivation on p-type c-Si with an arbitrary doping level.

The excellent level of surface passivation by Al₂O₃ was also confirmed by solar cell device performance. Al₂O₃ applied at the rear of p-type c-Si solar cells yielded a maximum efficiency of 20.6 %. This work was done in collaboration with the solar cell institute ISFH in Germany and will be presented in a separate contribution at this conference.[11,12] The performance of the Al₂O₃ passivated solar cells was at least equal to the solar cells with an annealed thermal SiO₂ rear surface passivation.[11,12]

c-Si SURFACE PASSIVATION MECHANISM OF Al₂O₃

In Fig. 4 field-effect passivation is simulated for a moderately doped n-type c-Si wafer for both a negative and positive charge density Q_{effective} at the surface. It can clearly be seen that a high positive or negative Q_{effective} results in a significant reduction of S_{eff}. For a sufficiently high Q_{effective} the minority surface carrier density scales with 1/Q_{effective} at the c-Si surface; hence the field-effect passivation scales with Q_{effective}, irrespective of the polarity of the Q_{effective}.

The surface passivation mechanism of Al₂O₃ is mainly based on field-effect passivation by a high fixed negative charge density Q in the Al₂O₃ film. In Fig. 5 it is demonstrated that a positive corona charge density Q_{corona} of 1.3×10^{12} cm^{-2} at the Al₂O₃ surface is required to cancel the field effect passivation. Q_{corona} is balancing the negative fixed charge density in a 26 nm Al₂O₃ film, resulting in a maximum in S_{eff}.

Negative fixed charges are routinely reported for Al₂O₃ films deposited on c-Si, irrespective of the deposition technique. The origin of these negative charges is most probably related to the
presence of Al vacancies in the Al₂O₃ film. It was shown that these vacancies are predominantly present at the c-Si/Al₂O₃ interface in excellent agreement with the position of the fixed negative charge density deduced from thickness dependent capacitance voltage measurements by for example Abouaf et al.

A negative Q_f is especially beneficial for the passivation of p-type c-Si as the minority carriers, the electrons, are effectively shielded from the c-Si surface. This is clearly apparent from the fact that the negative-charge-dielectric Al₂O₃ provides a state-of-the-art level of surface passivation even on highly B-doped p-type c-Si surfaces as shown in Fig. 3. The negative sign of the fixed charge also explains the flat injection level dependence of the surface passivation on low resistivity p-type c-Si as shown in Fig. 2 of this proceeding in excellent agreement with the extended Shockley-Read-Hall model. A strong injection level dependence is routinely reported for p-type c-Si passivated by thermal SiO₂, a-SiNₓ:H and a-Si:H. As the fixed charge density in Al₂O₃ is typically one order of magnitude higher compared to a-SiNₓ:H and two orders of magnitude higher compared to thermal SiO₂ and a-SiCₓ this implies that the field-effect passivation by Al₂O₃ is orders of magnitude stronger than for passivation layers such as a-SiNₓ:H and thermal SiO₂ and this relaxes the demanding requirements on the electrical interface quality. The excellent level of surface passivation has already been demonstrated by p-type c-Si solar cell devices.

CONCLUSIONS

It is demonstrated that Al₂O₃ is an interesting material to obtain a high level of c-Si surface passivation as required for high efficiency solar cells. Al₂O₃ not only yields a state-of-the-art level of surface passivation on low resistivity n- and p-type c-Si, but its high fixed negative charge density makes it also particularly interesting for the passivation of p-type c-Si with an arbitrary doping level such as highly doped p-type emitters. The field-effect passivation by Al₂O₃ is orders of magnitude stronger than for passivation layers such as a-SiNₓ:H and thermal SiO₂ and this relaxes the demanding requirements on the electrical interface quality. The excellent level of surface passivation has already been demonstrated by p-type c-Si solar cell devices.

ACKNOWLEDGMENTS

The authors thank W. Keuning (Eindhoven University of Technology) and all members of the photovoltaic department at ISFH for their contributions to this work.

REFERENCES

[4] W. M. M. Kessels, B. Hoex, and M. C. M. van de Sanden, This conference.