 Constant force linear permanent magnet actuators

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Abstract: In applications, such as vibration isolation, gravity compensation, pick-and-place machines, etc., there is a need for (long-stroke) passive constant force actuators combined with tubular permanent magnet actuators to minimize the power consumption, hence, passively counteract the gravitational forces. For example, in pick-and-place machines, the passive devices allow the powerless counteraction of nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and high bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge three linear permanent magnet motors placed in an H-configuration. This paper investigates the combined constant-force with tubular actuator topology, where the two actuator topologies are separately introduced and the combination is verified using comprehensive three-dimensional (3D) finite element analyses.

Index Terms: Placement machines, placement head, pick-and-place, electronics assembly equipment, constant force.

I. INTRODUCTION

In manufacturing automation, the most important performance requirements of robot manipulators for assembly of electronics parts are positioning accuracy, allowable component size and high speed motion. Limitations on these performance characteristics are imposed by mechanical design such as structure, materials used in the linkage, mass distribution techniques and by the drive system components such as gearing, spindle screws and actuators. To overcome many of these limitations, direct-drive H-bridge robot manipulators are introduced to place large components onto PCBs (printed circuit board), as shown in Fig. 1.

| TABLE 1 SPECIFICATIONS AX-201 COMPONENT MOUNTER. |
|---------------------------------|---------------------------------|
| Maximum output per hour | 5,300 |
| IPC 9850 output per hour | 3,900 |
| Placement accuracy (3σ) | 25 micron |
| Component range | 0.4x0.2mm/165x23mm |
| Maximum component height | 50 mm |
| Maximum board size (L x W) | standard 508 x 460 mm |
| Tape feeding positions | 96 (212 (twin tape)) |

More specifically, in the AX-201 component placement machine (www.assembleon.com) with the characteristics summarized in Table 1, the PCB is locked in position by a table which is also used to locate the required points for the placement operations. This PCB table uses a conveyor system and the placement heads are moved by an X-Y motion table, as shown in Fig. 2. This machine offers a combination of high placement accuracy and speed with an extremely wide component range. Therefore, it can be used for either stand-alone applications or as an end-of-line machine in combination with other
placement machines.

A lot of work has been done on improving the efficiency of component placement machines such as [2-4]. However, most previous work involves software improvements, e.g., an offline scheduler to reduce the number of component being missing from the feeder carrier. This paper presents a different approach, since there is an increasing demand for high-speed actuation with high precision and high bandwidth capability. As such, the most generic device of any component mounting machine is the placement head. This device is at the foundation of the motion chain and a large mass of this device will result in high force/power requirements for the H-bridge (three linear permanent magnet motors placed in an H-configuration, e.g., two for the y-axis movement and one for x-axis movement).

The complete Pick-and-Place action requires a four degrees-of-freedom robotic motion, where this paper focuses on the short-stroke (50 mm) linear motion in the vertical direction to pick and place the components, as shown in Fig. 3. To increase the throughput of the total P&P cycle a high force requirement of 300 N is needed to achieve the acceleration level with an added mass of 120 N.

Fig.3 – Linear part of the placement head consisting of a tubular permanent magnet actuator combined with a passive linear constant force actuator.

In general, the linear Z-axis movement of the placement heads is augmented by a mechanical coil spring to ensure that the placement head cannot crash into the PCB when there is a power disruption or software failure. However, this spring force added to the gravitational force of the translator always needs to be actively counteracted by the tubular actuator, which does result in a significant power demand. A more suitable solution would be provided by electromagnetic means, in such a manner that the mass of the translator, nozzle or gripper and average component can be compensated, estimated to be 120 N in this application. This can be achieved by combining the tubular permanent magnet (PM) actuator with a constant force actuator as shown in Fig. 3, which results in a significant improvement of the dynamic behavior. As such, Section II discusses the used optimization routine, Section III the design of the tubular permanent magnet actuator, Section IV the constant force actuator design and Section V the combined actuator. Finally, Section VI provides the conclusions.

II. OPTIMIZATION ROUTINE

Analytical determination of actuator performance provides an elegant way to design PM machines, e.g. lumped parameter model or analytical equations [5-7]. However, in order to implement these models certain assumptions need to be considered, hence, model inaccuracies occur, e.g., flux fringing, complex shapes, leakage, magnetic saturation, etc. are significant. Therefore, numerical techniques are commonly used to determine the field distribution and equivalent electric circuit components. However, using solely finite element (FE) techniques is time demanding and therefore rather inefficient for design optimization.

An alternative method is given by the space mapping (SM) technique introduced by Bandler et al. [8]. This optimization technique is surrogate-based where a simple physics based (coarse) model is exploited and aligned with the computationally intensive accurate (fine) model. This technique has successfully been applied in the field of microwaves for component and system modeling [9]. In this paper, the tubular and constant force actuators have been optimized using the SM technique [10]. The optimization routines together with the corresponding models are implemented in a Matlab (The MathWorks Inc.) and Maxwell 3D (Ansoft Co.) environment.

Tubular permanent magnet actuator optimization includes the selection of numerous dimensional and performance variables, e.g. pole pair, tooth thickness, tooth tip dimensions, winding configuration, slot number, pole-pitch, slot opening, coil-pitch, etc. In general, optimization routines primary design for high efficiency, however, this can be improved by increasing machine mass within the volume constraints specified. In this optimization, therefore also the translator mass has been included. Further, in slotted actuators, the winding and tooth area are contending for the same volume, hence, the magnetic and electrical loadings have been optimized by not only considering the magnetic parameters but also the thermal considerations.

The proposed design methodology has the following structure: an optimization problem is formulated for the proposed tubular actuator and an SM variant is implemented for determining the
corresponding solution; the objective is the
minimization of the actuator’s mass while providing a
specified (static) force response (100 N for a single
pole pair) and limiting the levels of iron core flux
densities and of generated heat through copper loss;
corresponding magnetic and thermal models have
been defined, where the tubular actuator optimization
is summarized in the next Section, and, consequently,
the constant force actuator is optimized in Section IV.
The coupled problem for the combined actuator will
be presented in Section V.

III. TUBULAR PM ACTUATOR

A slotted tubular PM actuator, as shown in Fig. 4,
is particularly interesting as it has a high force density,
no end-windings and zero net radial attraction force
between the translator and armature. The tubular
actuator consists of a stator and a translator, where
the moving magnet actuator is preferred since it does not
require connections to the moving part.

The stator of the TPMA contains coils and is
mostly either slotted or slotless, where the highest
force density can be achieved when a slotted structure
is used [5]. However, the slotted structure also has
some disadvantages, e.g. the reluctance in the airgap is
not uniform resulting in an extra force component
called cogging force. This can be minimized by
introducing typical pole-slot combination, albeit this
reduces the winding factor, and hence, the force
capability. In this actuator skewing will be applied,
which results in the actuator being suitable for this
precision positioning application, hence, a smooth
force versus position characteristic.

As already mentioned in Section II, the design
objective was to minimize the actuator mass for a
specified force output. In addition, upper limits are
imposed on the average flux density levels in the iron
core and on the peak temperature. This optimization
routine has been previously reported in [10], where the
combined electromagnetic with thermal analysis is
used as a basis for this paper. Therefore, the TPMA
radial cross-section is shown in Fig. 5 and axial in
Fig. 6, respectively. The relative dimensions and
design specifications (i.e. linear and nonlinear
constraints), i.e. force output, the maximum
admissible average flux densities in three regions of
the iron core and the maximum admissible
temperature, are summarized in Table 2.

<table>
<thead>
<tr>
<th>TABLE 2 DESIGN SPECIFICATIONS.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[x_1, x_2, x_3] (mm)</td>
<td>[6.0, 6.4, 2.0]</td>
</tr>
<tr>
<td>[x_4, x_5, x_6] (mm)</td>
<td>[5.0, 15.2, 23.7]</td>
</tr>
<tr>
<td>[x_7, x_8, x_9, x_{10}] (mm)</td>
<td>[1.8, 5.5, 3.6, 29.6]</td>
</tr>
<tr>
<td>Airgap, (g_1) (mm)</td>
<td>1.0</td>
</tr>
<tr>
<td>Force (N)</td>
<td>100</td>
</tr>
<tr>
<td>Mean flux density back-iron (T)</td>
<td>1.3</td>
</tr>
<tr>
<td>Inner coil temperature (°C)</td>
<td>130</td>
</tr>
</tbody>
</table>

The TPMA optimal design problem was solved
considering a heat convection boundary condition
with a value of 20 Wm\(^{-2}\)K\(^{-1}\) is specified on the outer
lateral surface of the actuator, with an ambient
temperature of 25 °C. The magnetic flux density
distribution is shown in Fig. 7. It must be noted that
for this design the shaft material was not considered,
and thus the shaft was not included in the total
calculated mass.
IV. OPTIMAL CONSTANT FORCE ACTUATOR DESIGN

Passive constant force actuators (CFA) and their respectively force-displacement characteristics are discussed in [11-12]. In general, this actuator is placed externally in parallel to the linear actuator. Further, no position sensor is required and an enhancement could be achieved if the given force characteristic could be varied by means of a predetermined constant current force-displacement actuator [12]. For shorter strokes, couple of cm’s or less, solenoids producing a force depending on current are used. These solenoids have a very simple structure and are therefore amenable to mass production. However they, in order to produce force, require a constant current excitation and usually still have to use a spring to return to their initial position. This paper, therefore, presents the optimal design of a long stroke constant force-displacement actuator topology, as shown in Fig. 3, that fits inside the tubular actuator with a constant passive (without energy consumption) force independent on the position for 90% of the stroke for a passive force level of 120 N, respectively.

Initially, the force capability of the constant force actuator can be derived from well established analytical expressions. This simplified analytical model is derived based on the following assumptions:

- no leakage fluxes or fringing effects are considered, and
- the magnet and iron relative permeabilities are taken to be equal to 1 and ∞, respectively.

For a magnet material having a linear demagnetization characteristic, with a working point that lies on the linear region, the flux density is given by:

\[B_m = B_r + \mu_0 \mu_r H_m, \]

where, B_m is the working flux density, H_m is the corresponding magnetic field strength, B_r is the remanent flux density and μ_r is the relative recoil permeability.

Starting from the general form of Ampere’s law:

\[\oint_c \mathbf{H} \cdot d\mathbf{l} = \iint_S \mathbf{J} \cdot d\mathbf{A} = I_{src}, \]

and considering the magnetic field strength to be (piece-wise) constant on the integration path, the simplified expression is obtained:

\[H_g l_g + H_m l_m = 0 \]

Further, it is assumed that the airgap and magnet flux are equal. Hence, for the surface-mounted magnet rotor structure the average magnet flux density, from (1), is:

\[B_m = \frac{B_r}{1 + \frac{l_g S_m}{l_m S_g}}, \]

where l_g and S_g are the airgap length and surface area, and l_m and S_m are the magnet thickness and the magnet area, respectively. The airgap flux density can be derived from (5) as:

\[B_g = B_m \frac{S_m}{S_g}. \]

The force is then derived from the rate of change of magnetic co-energy with respect to the translator displacement, where the force level, for the direction of travel along the z-axis, is then calculated by:

\[F_z = -\frac{\partial W}{\partial z} \bigg|_{l=const}, \]

then, by substituting (4) and (5) in (6), the following expression, which is independent of the z-axis displacement due to the exclusion of axial leakage in the analytical model, can be obtained for the force amplitude:

\[F_z = \frac{B_r^2}{2\mu_0} c_m l_m \left[\frac{l_g c_m}{1 + l_g c_m} - \frac{1}{1 + l_g c_m} \right] \left[\frac{l_m c_g 1}{l_m c_g 2} \right]. \]

In this, c_g and c_m are the width of the airgap and magnet flux path, respectively, and the expressions for calculating the various parameters considered are summarized in Table 3. In this, l_{g1} and c_{g1} are, correspondently, the length and area of the airgap of the overlapping part, l_{g2} and c_{g2} are the length and airgap of the non-overlapping part and l_m and c_m are...
the length and area of the permanent magnets. The various dimensions of x_{11} to x_{14} and g_2 are shown in Fig. 8 and summarized in Table 4. Further, n_p represents the number of poles, where the use of a low number of poles in CFAs (typically 2-4) is implemented.

TABLE 3 PARAMETERS FOR THE PASSIVE CFA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>l_{1g}</th>
<th>$2g$</th>
<th>c_{11}</th>
<th>$2\pi (x_1+x_2+g/2)/n_p/2$</th>
<th>l_{22}</th>
<th>$2\pi (x_1+x_2+g)/n_p/2$</th>
<th>c_{22}</th>
<th>$2\pi (x_1+x_2+g/2)/n_p/2$</th>
<th>l_{m3}</th>
<th>$2x_3$</th>
<th>c_{m2}</th>
<th>$2\pi (x_1+x_2+g+3x_3)/n_p/2$</th>
</tr>
</thead>
</table>

To increase the force level and density, the pole-pair number selection is significantly influenced by considerations regarding the size and leakage, since increasing the number of poles, reduces the stationary and translating back-iron thicknesses. However, it may also lead to a higher leakage flux, and thus, a decrease of the average airgap flux, hence, decreased forces. This is illustrated by Fig. 8, which shows the influence of varying the number of poles within the CFA. Clearly it can be seen that a reduced number of poles results in a smaller outer radius, hence, leakage flux is significant when the outer radius is relatively small. This also results in a smaller stator mass of the CFA, however a slight increased translator mass.

TABLE 4 CONSTANT FORCE ACTUATOR PARAMETERS

<table>
<thead>
<tr>
<th>n_p</th>
<th>x_{11} (mm)</th>
<th>g_2 (mm)</th>
<th>x_{12} (mm)</th>
<th>x_{14} (mm)</th>
<th>Outer radius (mm)</th>
<th>Translator mass (kg)</th>
<th>Stator mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.33</td>
<td>1.0</td>
<td>8.65</td>
<td>4.26</td>
<td>22.61</td>
<td>1.02</td>
<td>1.23</td>
</tr>
<tr>
<td>6</td>
<td>4.45</td>
<td>1.0</td>
<td>8.75</td>
<td>3.56</td>
<td>24.83</td>
<td>0.96</td>
<td>1.57</td>
</tr>
<tr>
<td>8</td>
<td>3.98</td>
<td>1.0</td>
<td>9.04</td>
<td>3.18</td>
<td>27.41</td>
<td>0.97</td>
<td>1.93</td>
</tr>
<tr>
<td>10</td>
<td>3.66</td>
<td>1.0</td>
<td>9.32</td>
<td>2.93</td>
<td>29.94</td>
<td>0.99</td>
<td>2.27</td>
</tr>
</tbody>
</table>

The magnetic loading, B_r, determines the specific force capability, as it is clear from (10). Further, it seems that scaling the surface mount magnets produces an increase in airgap flux density. However, if the airgap could be reduced a significantly smaller magnet thickness could provide the same force, also an upper constraint could be implemented on the magnet thickness. Further, the CFA force output could also be varied by adding a stator mmf using a meandered wound coil in between the magnets, which allows for deviations of the constant force characteristic amplitude [12].

V. COMBINED ACTUATOR

The combined tubular and constant force actuator topology requires a 3D representation, as shown in Fig. 10a, where the actuator is modeled in magnetostatic 3D finite element (FE) by means of Maxwell 3D from Ansoft Co. However, this does require approximately 50,000 tetrahedra elements to achieve an accurate force response (for an active length of 198 mm Fig. 10b). By utilizing the symmetry inside the model this finite element model can be reduced to a quarter for the CFA of Fig. 8, as shown in Fig. 10a.
The relative evaluated dimensions and geometry are given by combining Tables 2 and 4. These dimensions are separately optimized designs combined into a single actuator. The permanent magnets are assumed to be a sintered NdFeB with a remanence of 1.23T and can be either radially or parallel magnetized. Further, the standard non-linear BH-curve for mild steel, AI 1010, is used for both stationary as translating back-iron.

The force-displacement characteristic of the combined actuator is shown in Fig. 10. In this figure a stroke of 0 mm (initial position) corresponds to the stator with magnets and translator of the CFA being fully aligned and Fig. 11 shows the resulting force characteristics. Using the 3D finite element analyses, simulations at various positions of the CFA inner part (stator) have been undertaken, which results in the force acting on the combined translator is the sum of the TPMA (approximately 300 N), CFA (120 N) force and gravitational force responses, as shown in Fig. 11. This gives that this combined actuator allows for the compensation of a mass of some 120 N when moving downwards from the equilibrium position, hence, in this working area has an increased acceleration.

VI. CONCLUSIONS

Several aspects regarding the design of a long stroke actuator that can compensate for translator and nozzle mass in a tubular permanent magnet actuator have been discussed. First the application has been discussed, where clearly the highest dynamical performance occurs with a maximum of some 120 N when moving downwards from the equilibrium position, hence, in this working area has an increased acceleration.

Fig.11 – Combined tubular permanent magnet with constant force actuator: Force versus z-axis position characteristic.

REFERENCES

Johannes Paulides (j.j.h.paulides@tue.nl) was born in Waalwijk, The Netherlands in 1976. He received the B.Eng. degree from the Technische Hogeschool 's-Hertogenbosch in 1998 and the M.Phil. and Ph.D. degrees in electrical and electronical engineering from the University of Sheffield in 2000 and 2005, respectively. Since 2005, he has been a Research Associate at Eindhoven University of Technology, and simultaneously is a director of Paulides BV and Advanced Electromagnetics BV, small SMEs based in the Netherlands producing electrical machines and prototype electromagnetic devices. His research activities span all facets of electrical machines, however in particular linear and rotating permanent magnet excited machines for automotive and high precision applications.

Laurentiu Encica (l.encica@tue.nl) was born in Bucharest, Romania, in 1978. He received the Dipl. Eng. degree from the University "Politehnica" of Bucharest, Romania, in 2002, and the Ph.D. degree from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2008. He is currently affiliated as a post-doctoral researcher with the Eindhoven University of Technology, The Netherlands. His research interests are in computer assisted analysis, design and optimization of electromagnetic actuators.

Koen Meessen (k.j.meessen@tue.nl) received his MSc degree from Eindhoven University of Technology, The Netherlands, in 2008, where he is currently working towards his Ph.D. degree on a high acceleration tubular permanent magnet actuator for pick-and-place machines. Additionally he is a member of the Robocup football team, where he is responsible for the electromechanical actuators and their control. His current research interests are in design of high-performance electromagnetic permanent magnet actuators.

Elena A. Lomonova (e.lomonova@tue.nl) was born in Moscow, Russia. She received the M.Sc. (cum laude) and Ph.D. (cum laude) degrees in electromechanical engineering from Moscow State Aviation Institute (TU), Moscow, Russia, in 1982 and 1993, respectively. She is currently an Associate Professor at Eindhoven University of Technology, Eindhoven, The Netherlands. She has worked on electromechanical actuators design, optimization, and development of advanced mechatronics systems.