Comment on "The nucleation behavior of supercooled water vapor in helium"

Citation for published version (APA):

DOI:
10.1063/1.1645770

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Aug. 2019
In a recent paper1 by Peeters \textit{et al.}, new experimental data on nucleation rates of water in helium in the temperature range of 200–235 K were presented. The original data are shown in Fig. 1. Nucleation rates have been reduced with classical nucleation theory predictions as described in the original paper.1 In this temperature range a drastic change in the nucleation process was observed at 207 K, which according to the author’s suggestion was due to a transition from vapor/liquid to vapor/solid nucleation. To investigate this phenomenon more carefully some additional experiments were made in the same temperature range and using the same experimental setup as well. The new measurements did not show any sign of such transition in the indicated temperature range. To explain the discrepancy, the raw data obtained by Peeters \textit{et al.} were closely investigated and an error was found in the calculation of the vapor fraction of water in the test gas mixture.

The test gas mixture originates from a combination of two different streams. One is a “wet” helium gas stream. This gas stream is saturated with water vapor by bubbling it through two containers, half-filled with water at a constant pressure and temperature. In that way, the wet gas stream has a constant vapor fraction. It can be diluted by the second gas stream, which consists of dry helium only. The gas streams are controlled by mass flow controllers (MFCs). Setting a different ratio of the flows through the MFCs alters the composition of the gas–vapor mixture.

The experimental setup allows measuring nucleation rates in a “window” between 10^{14} and 10^{17} m$^{-3}$ s$^{-1}$. For different temperature regions, different initial saturations have to be chosen. This is achieved by changing the degree of dilution of the wet gas stream. The error made by Peeters \textit{et al.} was that they used a wrong calibration curve for the MFC controlling the dry gas (helium) stream. As a result, the real vapor fraction in the test gas was lower than the calculated one. Peeters \textit{et al.} observed a sudden change in nucleation rates (Fig. 1) at 207 K. It has become clear now that the nucleation rate jump was caused by a discontinuous change in the dilution procedure at 207 K. The raw data of Peeters \textit{et al.} have been reinterpreted using the correct calibration data and they are shown in Fig. 1. The recalculated data in tabulated form can be obtained directly from the authors by e-mail or from EPAPS.2 The corrected data agree quite well with the data by Wölk and Strey3 (see Fig. 1). Wölk and Strey obtained their data using a completely different type of experimental setup.

aElectronic mail: d.g.labetski@tue.nl

2See EPAPS Document No. E-JCPSA6-120-004410 for the recalculated nucleation data in tabular form. A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.