Thus
\[2^{2a+2b+c} \approx 3^{a+b+c}, \]
or
\[\log_2 3 \approx \frac{2a + 2b + c}{a + b + c}. \]

The most likely periods for a finite cycle, which are here given by the sum \(a + b + c \), are therefore the denominators in the best rational approximations of \(\log_2 3 \). Since the continued fraction
\[\log_2 3 = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{3 + \frac{1}{1 + \cdots}}}}} \]
has the convergents
\[\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{8}{5}, \frac{19}{12}, \frac{65}{41}, \cdots, \]
we do find denominators of 1, 2, 5, and 12.

However, it has not been proven that these denominators constitute the only allowable periods. Nor has a finite cycle of period 41 been discovered. Nor have any other finite cycles been so far discovered.

Problem 63-14, A Resistance Problem, by **Ron L. Graham** (Bell Telephone Laboratories).

A regular \(n \)-gon is given such that each vertex is connected to the center and to its two neighboring (nearest) vertices by means of unit resistors. Determine the equivalent resistance \(R_n \) between two adjacent vertices.

Solution. By **C. J. Bouwkamp** (Philips Research Laboratories, and Technological University, Eindhoven, Netherlands).

Let \(A \) and \(B \) be two neighboring vertices; let an electric current \(I \) enter the “wheel” at \(A \), and let it leave at \(B \), as due to an applied voltage \(V \) across \(AB \).

Assuming \(n > 2 \) and \(0 \leq k < n \), let currents \(i_{2k} \) flow from the center \(C \) to the successive vertices along the circumference, and let currents \(i_{2k+1} \) flow in the circumferential resistors. The current from \(C \) to \(A \) is \(i_0 \), that from \(C \) to \(B \) is \(i_{2n-2} = -i_0 \), and that from \(B \) to \(A \) is \(i_{2n-1} = -2i_0 = V \). The input current at \(A \) is \(I = i_1 - 3i_0 \), hence

\[R_n = \frac{-2i_0}{i_1 - 3i_0}. \]

Now, by applying alternately Kirchhoff’s mesh-voltage and node-current laws, we easily obtain the recurrence relation

\[i_k = i_{k-1} + i_{k-2}, \]

holding for \(1 < k < 2n - 1 \).

Let \(x = \frac{1}{2}(1 + \sqrt{5}) \) and \(y = -1/x \) denote the two zeros of the characteristic
polynomial $z^2 - z - 1$ of (2). Then, with $u_k = (x^k - y^k)/(x - y)$, $i_k \ (k > 1)$, can be linearly expressed in terms of i_0 and i_1, as follows:

$$i_k = u_{k-1}i_0 + u_ki_1.$$

Here $\{u_k\}, \ k = 1, 2, \ldots$, is the well-known sequence of Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Since

$$-i_0 = i_{2n-2} = u_{2n-3}i_0 + u_{2n-2}i_1,$$

we find

$$-i_1 \over i_0 = 1 + u_{2n-3} \over u_{2n-2},$$

and substitution of this in (1) gives, after some transformation,

$$R_n = 2u_{2n-2} \over 1 + u_{2n-2} + u_{2n},$$

which solves the problem in question.

However, (3) can be simplified considerably if we distinguish between even and odd values of n. Let $v_k = x^k + y^k$; then $\{v_k\}, \ k = 1, 2, \ldots$, is the sequence of Lucas numbers:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, · · ·

As is well-known, the Fibonacci and Lucas sequences constitute two linearly independent solutions of the difference equation (2). There exist many relations between these numbers; for example,

$$u_{n-1} + u_{n+1} = v_n, \quad v_{n-1} + v_{n+1} = 5v_n,$$

which can easily be proved by induction.

Now, if n is odd we have $i_{n-1} = 0$ in virtue of symmetry; this leads to

$$-i_1 \over i_0 = u_{n-2} \over u_{n-1} = v_{n-2} + v_{n-1} \over v_{n-2} + v_n.$$

If this is inserted in (1) we get after a few manipulations the set of formulas:

$$R_n = 2u_{n-1} \over u_{n-1} + u_{n+1} = 2u_{n-1} \over v_n = 2 \over 5 \left(1 + v_{n-2} \over v_n\right),$$

$$\frac{1}{R_n} = \frac{1}{2} \left(1 + \frac{u_{n+1}}{u_{n-1}}\right), \quad n \text{ odd}.$$

On the other hand, if n is even we have $i_n = -i_{n-2}$, again by symmetry, and thus

$$-i_1 \over i_0 = u_{n-2} + u_{n-1} \over u_{n-2} + u_n = v_{n-2} \over v_{n-1}.$$
Therefore, the analog of (5) is obtained from (5) by interchange of \(u \) and \(v \), except for an extra factor of 5 in the middle:

\[
R_n = \frac{2v_{n-1}}{v_{n-1} + v_{n+1}} = \frac{2v_{n-1}}{5u_n} = \frac{2}{5} \left(1 + \frac{u_{n-2}}{u_n} \right),
\]

\[
\frac{1}{R_n} = \frac{1}{2} \left(1 + \frac{v_{n+1}}{v_{n-1}} \right), \quad n \text{ even.}
\]

There is yet another way to evaluate \(R_n \) which deserves mention. Let \(n \) be an odd number; take (6) for \(n + 1 \) and (5) for \(n \); then

\[
\frac{5}{2} R_{n+1} - 1 = \frac{u_{n-1}}{u_{n+1}} = \left(\frac{2}{R_n} - 1 \right)^{-1}.
\]

If \(n \) is even, these relations hold if \(u \) is replaced by \(v \). Therefore, if \(n \) is arbitrary we have the recurrence relation

\[
R_{n+1} = \frac{4}{5(2 - R_n)},
\]

which with \(R_3 = \frac{1}{2} \) allows the numerical evaluation of \(R_n \) independently of the Fibonacci and Lucas numbers.

The behavior of \(R_n \) for large values of \(n \) is determined by

\[
R_\infty = \lim_{n \to \infty} R_n = 1 - 5^{-1/2} = 0.5527 \ 8640 \ 4 \cdots.
\]

The limit is attained monotonically from below. For \(n \geq 20 \), \(R_n \) equals \(R_\infty \) up to 8 decimals; see Table 1.

Generalization of the problem. In what follows we determine the equivalent resistance between any two vertices of the wheel.

First, let \(r_n \) denote the equivalent resistance between the vertex \(A \) and the center \(C \). Then

\[
r_n = 1 - R_n.
\]

To prove (8), let \(S_n \) denote the equivalent resistance between \(A \) and \(B \) if the unit resistor between \(A \) and \(B \) is deleted. Then, by the parallel-connection theorem, \(R_n^{-1} = 1 + S_n^{-1} \). Similarly, we have \(r_n^{-1} = 1 + s_n^{-1} \), where \(s_n \) is the equivalent resistance between \(A \) and \(C \) if the unit resistor between \(A \) and \(C \) is deleted. Now, the wheel is not only highly symmetric but it is also a self-dual network; this implies \(s_n S_n = 1 \) which, with the two identities above, is (8).

Secondly, let \(R_{n,m} \) denote the equivalent resistance between \(A \) and some vertex \(D \) along the circumference of the wheel such that there are \(m \) unit resistors between \(A \) and \(D \), \(0 < m < n \). Obviously, \(R_{n,1} = R_n \), and in this case the input current is \(i_1 = 3i_0 \), while the applied voltage is \(-2i_0 \). Now, let this very current enter the wheel at \(A \), let it leave at \(B \), let it again enter at \(B \), let it leave at the next vertex, and so on, until it leaves the wheel at \(D \). The new set of currents is obtained by simply adding the partial currents of the \(m-1 \) steps (at each step the subscripts of the currents increase by 2). For example, the current from \(C \) to
A becomes

\[i_0' = i_0 + i_2 + \cdots + i_{2m-2} \]

If we know \(i_0' \), we can calculate \(R_{n,m} \) because

\[R_{n,m} = \frac{-2i_0'}{i_1 - 3i_0'} \]

Evidently, \(i_0' \) can be linearly expressed in \(i_0 \) and \(i_1 \), as follows:

\[i_0' = i_0 + \sum_{k=1}^{m-1} i_{2k} = i_0 \sum_{k=0}^{m-1} u_{2k+1} + i_1 \sum_{k=0}^{m-1} u_{2k} \]

\[= (1 + u_{2m-1})i_0 + (-1 + u_{2m-1})i_1 \]

If this is substituted in (9) we get, after some transformation,

\[R_{n,m} = 2 \frac{1 + u_{2n-1} - u_{2m-1} + u_{2m-2} u_{2n-3} - u_{2m-1} u_{2n-3}}{1 + u_{2n-2} + u_{2n}} \]

To eliminate the product terms in the numerator, we replace them by their explicit expressions in terms of \(x \) and \(y \), so as to obtain

\[u_{2m-2} u_{2m-3} - u_{2m-1} u_{2n-3} = -u_{2n-2m-1} \]
and therefore

(10) \[R_{n,m} = R_{n,n-m} = \frac{2 + u_{2n-1} - u_{2m-1} - u_{2m-2} + u_{2n}}{1 + u_{2n-2} + u_{2m}}. \]

This formula holds for \(n \geq 3 \) and \(0 \leq m \leq n \). In fact, the numerator vanishes if \(m \) is either \(n \) or 0, as it should. From (10) may be derived

(11) \[R_{n,m} = (u_{2m-1} + u_{2m+1} - 2)R_n + 2(1 - u_{2m-1}), \]

which is useful for numerical calculations if a list of \(R_n \) (see Table 1) is available. In particular, (11) gives \(R_{n,2} = 5R_n - 2 \), \(R_{n,3} = 8(2R_n - 1) \),

\[R_{n,4} = 3(15R_n - 8), \quad R_{n,5} = 11(11R_n - 6). \]

Again, the general expression (10) can be much simplified if we distinguish between the four possibilities as to the parity of \(n \) and of \(m \). Without going into details of proof, we state the final result:

(12) \[R_{n,m} = \begin{cases} 2u_m u_{n-m}/u_n, & n \text{ even, } m \text{ even,} \\ 2v_m v_{n-m}/5u_n, & n \text{ even, } m \text{ odd,} \\ 2u_m v_{n-m}/v_n, & n \text{ odd, } m \text{ even,} \\ 2v_m u_{n-m}/v_n, & n \text{ odd, } m \text{ odd.} \end{cases} \]

Equivalently, we have

(13) \[R_{n,m} = \frac{2}{\sqrt{5}} \frac{(p^n - 1)(p^{n-m} - 1)}{p^n - 2}, \quad p = x^2 = \frac{1}{2} (3 + \sqrt{5}). \]

Equation (13) was independently obtained by N. G. de Bruijn. In fact, it was his formula (13) that led us to the establishment of (12) given (10).

Also solved by S. D. Bedrosian (University of Pennsylvania), John W. Cell (North Carolina State University), William D. Fryer (Cornell Aeronautical Laboratory), Charles A. Halijak (Kansas State University), Philip G. Kirmser (Kansas State University), George E. Radke (Philadelphia Electric Company), Sidney Spital (California State Polytechnic College) and the proposer.

Problem 63-15, On a Periodic Solution of a Differential Equation, by G. W. Veltkamp (Technological University, Eindhoven).

a) Consider the differential equation

(1) \[\frac{dy}{dt} + f(y) = p(t), \]

where

(i) \(p \) is continuous and periodic with period 1,
(ii) \(f \) is continuously differentiable for all \(y \),
(iii) \(f(y_2) > f(y_1) \) whenever \(y_2 > y_1 \),