High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate

Citation for published version (APA):

DOI:
10.1109/LPT.2008.2005425

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
High-Performance InP-Based Photodetector in an Amplifier Layer Stack on Semi-Insulating Substrate

Ling Xu, Student Member, IEEE, Mahmoud Nikoufard, Xaveer J. M. Leijtens, Member, IEEE, Tijbbe de Vries, Elbertus Smalbrugge, Richard Nötzel, Yok Siang Oei, and Meint K. Smit, Fellow, IEEE

Abstract—A waveguide photodetector (PD) based on semi-insulating (SI) indium phosphide (InP) was simulated, designed, and fabricated. The layer stack for this PD was optimized for use as an optical amplifier or laser and it can be combined with the passive components. By using an SI substrate and deep etching, a small, efficient, and high-speed PD was made, which allows for easy integration of source, detector, and passive optical components on a single chip. A 3-dB bandwidth of 35 GHz and 0.25 A/W external radio-frequency reponsivity is measured at 1.55-μm wavelength for a 1.5-μm-wide and 30-μm-long waveguide PD at −4-V bias voltage. The polarization dependence in the responsivity is less than 0.27 dB.

Index Terms—Photodetector (PD), semi-insulating (SI), semiconductor optical amplifier (SOA).

I. INTRODUCTION

Monolithic integration of different optical building blocks, such as passive waveguide devices (PWDs), semiconductor optical amplifiers (SOAs), photodetectors (PDs), and modulators allows for flexible design of photonic integrated circuits. Previously, we reported on devices based on a combination of PWDs and SOAs, such as multishallength ring lasers [1] and mode-locked lasers [2]. This Letter focuses on the performance of PDs fabricated in the SOA layer stack and operated by reversely biasing the pn-junction.

Others have presented PDs with increased sensitivity by monolithic integration of a waveguide PD and an SOA in a common layer stack [3]–[5]. In [3], a PD based on bulk material has achieved 20-GHz bandwidth, and in [5] the PD was based on multiquantum-well and achieved 40-Gb/s operation. However, the latter PD is highly polarization-dependent.

In this Letter, we present a 35-GHz PD in a bulk SOA layer stack with smaller than 0.27-dB polarization dependence in the responsivity. The active–passive layer stack used for these PDs is shown in Fig. 1. The film layer thickness of the waveguide is 500 nm, both in the absorbing region and in the transparent region, in order to obtain single-mode operation in the transverse direction. The confinement factor multiplied by the material gain coefficient of the SOA/laser based on this layer stack is 1.12 × 10−20 m² and the threshold current density is about 3 kA/cm² with cleaved facets at room temperature. One example which monolithically integrates a passive component (a wavelength duplexer), an SOA, and a PD based on this layer stack is the reflective transceiver [6]. It had a 750-μm-long SOA and achieved 5-dB fiber–fiber gain with 100 mA at the gain peak at 1530 nm. The bandwidth of the PD was limited to 14 GHz due to the N-substrate and the bonding wire. To obtain a higher radio-frequency (RF) bandwidth, a semi-insulating (SI) substrate was used to reduce the RF loss and the parasitic capacitance. To further minimize the capacitance, this PD is small and etched through the film until the highly doped N–InP layer. The fabrication technology is completely compatible with the SOA/laser and the passive components. The measurement results show that a 30-μm (80 μm)-long, 1.5-μm-wide deeply etched PD can operate up to 35 GHz (28 GHz) with external RF responsivity up to 0.25 A/W (0.35 A/W) at a wavelength of 1.55 μm. The polarization dependence in the responsivity is less than 0.27 dB (0.2 dB).

II. SIMULATION

To estimate achievable bandwidth based on this layer stack, we calculate the transit time bandwidth (f_{tr}), the resistive–capacitive (RC) time (f_{RC}), and the total bandwidth (f_{total}) as a function of the waveguide width and length. The parameters and the equations for calculating the bandwidths and the series resistance of the waveguide PD with different size are given in Table I. The calculated f_{tr} for these PDs is 40 GHz. The parasitic capacitance C_P is about 12 fF extracted from the experiments. The simulated RC time bandwidth for different widths and lengths is shown in Fig. 2(left). The total bandwidth is primarily limited by the transit time for a 30-μm-long below 2-μm-wide device. The RC bandwidth is
TABLE I
EQUATIONS AND THE PARAMETERS USED FOR THE CALCULATION

<table>
<thead>
<tr>
<th>Equations</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{tr} \approx \frac{2 \cdot v_e}{d_{dep}} \times \frac{1}{d_{dep}}$</td>
<td>v_e and v_d: electron and hole velocity</td>
<td>$v_e = 6 \times 10^6 \text{ cm/s}$, under high electric field</td>
</tr>
<tr>
<td>$f_{tr} = \frac{1}{2} \left(\frac{1}{v_e} + \frac{1}{v_d} \right)$</td>
<td>d_{dep}: depletion layer thickness</td>
<td>$v_d = 4 \times 10^6 \text{ cm/s}$, under high electric field</td>
</tr>
<tr>
<td>$f_{tr} = \frac{1}{2 \pi R_C} \left(\frac{1}{R_{in}} + \frac{1}{R_{out}} \right)$</td>
<td>ε_r: relative permittivity</td>
<td>$\varepsilon_r = 13$</td>
</tr>
<tr>
<td>$C_{total} = \frac{C_{in}}{R_{in}} + \frac{C_{out}}{R_{out}}$</td>
<td>L and W: length and width of the device</td>
<td>$\mu_0: 0.75 \text{ cm}^2/\text{s}$ in $1 \times 10^{18} \text{ cm}^{-3}$ p-InP</td>
</tr>
<tr>
<td>$R_{p,n} = \frac{q}{e} \frac{N_p}{N_n+W/L}$</td>
<td>μ_0 and μ_d: electron and hole mobility</td>
<td>$\mu_d: 1500 \text{ cm}^2/\text{s}$ in $1 \times 10^{18} \text{ cm}^{-3}$ n-InP</td>
</tr>
<tr>
<td>R_n and $R_{c,n}$: p- and n-layer sheet resistance</td>
<td>$d_{p,n}$ and d_{n}: p- and n-layer thickness in the ridge</td>
<td>$W_{gap} = 10 \mu$m</td>
</tr>
<tr>
<td>N_p and N_n: doping level of p- and n-InP</td>
<td>$R_{tc,n}$: resistance from the ridge to n-contact within n-InP layer.</td>
<td>$W_{p,n}$ equal to W for p-contact and $W_{c,n}$ is 100 nm wide for n-contact</td>
</tr>
<tr>
<td>$R_{tc,p,n} = \frac{d_{p,n}}{e \mu_d N_p} + \frac{d_{n}}{e \mu_d N_n}$</td>
<td>$\rho_{c,n}$: resistance of the contact for p-InGaAs and n-InP.</td>
<td>$\rho_{c,n}$ measured $5 \times 10^{-6} \Omega \cdot \text{cm}^2$ for</td>
</tr>
<tr>
<td>$R_{p,n} = \frac{R_{nc}}{W_{gap,n} \cdot L}$</td>
<td>$R_{p,n}$: contact resistance between the metal and semiconductor material p-InGaAs and n-InP.</td>
<td>$1.5 \times 10^{19} \text{ cm}^{-3}$ p-InGaAs contact and</td>
</tr>
<tr>
<td>$W_{p,n}$: distance from the middle of the ridge to n-contact</td>
<td></td>
<td>$1.0 \times 10^{-3} \text{ cm}^2$ for $1 \times 10^{18} \text{ cm}^{-3}$ n-InP contact with 25 nm/75 nm/250 nm Ti/Pt/Au.</td>
</tr>
<tr>
<td>$R_{c,n}$: the thickness of the unetched slab n-InP.</td>
<td></td>
<td>R_{LC}: 50 Ω load</td>
</tr>
</tbody>
</table>

Fig. 2. Simulated RC bandwidth (left) and the total bandwidth (right) based on the transit time and the RC time constant for PDs with different widths and lengths. The depletion layer thickness is calculated to be 550 nm under -4 V.

III. FABRICATION

The epitaxial material was grown on an SI InP substrate by three-step low-pressure metal–organic vapor phase epitaxy at 625 °C. The first epitaxy finished with a 120-nm-thick SOA active InGaAsP layer ($Q_{1.55}$, $\lambda_{gap} = 1.55 \mu$m), embedded between two quaternary confinement layers ($Q_{1.25}$) with different doping levels, covered by a 200-nm-thick p-InP layer. Next, the active sections were defined by lithography and reactive ion etching (RIE) using a SiN$_x$ layer as the etching mask. In the second epitaxy step, a Q1.25 InGaAsP layer was selectively grown for the passive sections with the SiN$_x$ mask protecting the active sections. In the third epitaxy step, the p-doped InP cladding layers with graded doping level and the p-InGaAs contact layer were grown with a total thickness of 1300 nm. The typical reflectivity at butt-joint is lower than -40 dB, and the transmission loss is lower than 0.19 dB [8]. There are four different RIE etching steps in total, the etching until the SI-substrate for the ground–signal–ground (GSG) probe pads, deep etching until highly doped n-InP layer for the PD, shallow etching until 100 nm into the waveguide film layer for the access passive waveguide and p-contact layer removal from the passive waveguide (300 nm). Polyimide was spun for passivation and planarization. Before metallization, first we etched back the polyimide in a barrel etcher to expose the p-InGaAs contact layer. Afterwards, we used photoresist as a mask to protect the exposed p-contact, and etch the polyimide directionally to open the n-InP contact layer. To form the metal contact, Ti–Pt–Au were evaporated on the top p-InGaAs and the lateral grounds (n-InP) through lift-off. The gap distance between the p- and n-contact was designed 10 μm. To minimize the RF transmission loss, the contacts were electro-plated until the thickness of the gold was about 1.5 μm, which is three times larger than the skin depth. The photograph in Fig. 1 shows fabricated PDs with metal contacts, which were tapered from the PD to the GSG.
probe pads which have a 100-μm pitch. The central contact is 70 μm wide. The access side was cleaved with about 33% and 26% facet reflectivity (Rfacet) for transverse-electric (TE) and transverse-magnetic (TM) polarization.

IV. EXPERIMENTAL RESULTS

The optical signal is coupled into the waveguide via the cleaved facet of the chip. All measurements were performed using on-wafer probing. The deeply etched PDs exhibit low dark current, less than 50 nA at −4 V bias voltage for the PDs up to 80 μm long. To determine the external responsivity for different polarization states, a tunable laser was used as a light source, and the polarization was selected through a polarizer and coupled through a microscope-objective to the waveguide PD. The measured photocurrents for TE and TM at λ = 1.55 μm under −4 V are shown in Fig. 4 for two different lengths. The input optical power in Fig. 4 is the power from the laser (P laser) multiplied by Rfacet for TE and TM polarization. The 80-μm-long PD has a higher responsivity than 30-μm-long PD. The polarization dependence in responsivity for 30-μm (80-μm)-long PDs is small, less than 0.27 dB and (0.2 dB).

On-wafer S-parameter measurements are performed in the range of 10 MHz to 67 GHz with a lightwave component analyzer and a 50-GHz RF probe. The PD was biased at −4 V through a 65-GHz bias tee, and the injected wavelength from the lightwave analyzer is 1.55 μm with −1-dBm optical power before the lensed fiber. The measured small signal frequency response (optical–electrical) is given in Fig. 5. The vertical axis is the actual responsivity relative to 1 A/W at different frequencies. Thus the measured RF responsivity of 30-μm (80-μm)-long PD is about 0.25 A/W (0.35 A/W) at 10 MHz to 0.16 A/W (0.18 A/W) at 50 GHz. If we take 5 dB as fiber-chip coupling efficiency and loss in InGaAsP/InP waveguides, the measured 3-dB total frequency response is 35 GHz (28 GHz) for 30-μm (80-μm)-long PD, which is in good agreement with the simulated total bandwidth in Fig. 2. The oscillation in the measurement is due to the reflection between the RF probes.

V. CONCLUSION AND DISCUSSION

By using an Si substrate and deep etching, a small-area waveguide PD based on an amplifier/laser layer stack achieved up to 35 GHz with 0.25 A/W external RF responsivity, and less than 0.27-dB polarization dependence. This result enables the monolithic integration of source and high-performance PD based on flexible butt-joint active–passive material without the need for a dedicated detector layer stack. It will be suitable for 40-Gb/s operation.

REFERENCES