Response time analysis in distributed real-time systems
An improvement based on best-case finalization time analysis

R.J. Bril · L. Cucu-Grosjean · J. Goossens

1 Introduction

Existing end-to-end response time analysis in distributed real-time systems [2], where the
finalization of one task on a processor activates another task on another processor, is pes-
simistic. By “pessimistic” we mean that not all systems deemed to be unschedulable by the
analysis are in fact unschedulable. This pessimism has two causes: (i) the existing analysis
is based on best-case response times rather than best-case finalization times and (ii) those
best-case response times are based on analysis for (worst-case) deadlines at most equal to
periods minus (absolute) activation jitter [1]. In this paper, we present analytical means to
determine best-case finalization times of independent real-time tasks with deadlines larger
than periods minus activation jitter under uniprocessor fixed-priority preemptive scheduling
(FPPS) and arbitrary phasing, allowing an improvement of the existing analysis. We will
illustrate the improvement by means of an example.

We assume a single processor and a set T of n periodically released, independent tasks
$\tau_1, \tau_2, \ldots, \tau_n$ with unique, fixed priorities. At any moment in time, the processor executes
the highest priority task that has work pending, i.e. tasks are scheduled using FPPS.

Each task τ_i generates an infinite sequence of jobs ι_{ik} with $k \in \mathbb{Z}$. The inter-activation
times of τ_i are characterized by a (fixed) period $T_i \in \mathbb{R}^+$ and an (absolute) activation jitter
$A_{J_i} \in \mathbb{R}^+ \cup \{0\}$, where $A_{J_i} < T_i$. Moreover, τ_i is characterized by a (fixed) computation time
$C_i \in \mathbb{R}^+$, a phasing $\phi_i \in \mathbb{R}$, a (relative) worst-case deadline $W_{D_i} \in \mathbb{R}^+$, and a (relative)
best-case deadline $B_{D_i} \in \mathbb{R}^+ \cup \{0\}$, where $B_{D_i} \leq W_{D_i}$. The set of phasings ϕ_i is termed
the phasing ϕ of the task set T. We assume that we have no control over the phasing ϕ, so any
arbitrary phasing may occur. The deadlines B_{D_i} and W_{D_i} are relative to the activations.

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e), Mathematics and Computer Science Department, Den Dolech 2,
E-mail: R.J.Bril@tue.nl

Liliana Cucu-Grosjean
INRIA Nancy-Grand Est, TRIO team, 615 rue du Jardin Botanique, Villers les Nancy, 54600, France.
E-mail: Liliana.Cucu@loria.fr

Joël Goossens
Université Libre de Bruxelles (ULB), Computer Science Department, Boulevard du Triomphe - C.P.212, 1050
Brussels, Belgium.
E-mail: Joel.Goossens@ulb.ac.be
Note that the activations of \(\tau_i \) do not necessarily take place strictly periodically with period \(T_i \), but somewhere in an interval of length \(AJ_i \) that is repeated with period \(T_i \). The activation times \(a_{ik} \) of \(\tau_i \) satisfy \(\sup_{\ell} (a_{ik}(\varphi_i) - a_{i(\varphi_i)} - (k - \ell) T_i) \leq AJ_i \), where \(\varphi_i \) denotes the start of the interval in which job zero is activated, i.e. \(\varphi_i + k T_i \leq a_{ik} \leq \varphi_i + k T_i + AJ_i \). A task with activation jitter equal to zero is termed a \textit{strictly periodic} task.

\[\text{Fig. 1: Basic model for a periodic task } \tau_i \text{ with (absolute) activation jitter } AJ_i. \]

The \textit{(relative) finalization time} \(F_{ik} \) of job \(\tau_{ik} \) is defined relative to the start of the interval in which \(\tau_{ik} \) is activated, i.e. \(F_{ik} = f_{ik} - (\varphi_i + k T_i) \). The \textit{active interval} of job \(\tau_{ik} \) is defined as the time span between the activation time of that job and its finalization time, i.e. \([a_{ik}, f_{ik}] \). The \textit{response time} \(R_{ik} \) of job \(\tau_{ik} \) is defined as the length of its active interval, i.e. \(R_{ik} = f_{ik} - a_{ik} \).

Figure 1 illustrates the above basic notions for an example job of a periodic task \(\tau_i \). Whereas \(F_{ik} = R_{ik} \) holds for a strictly periodic task \(\tau_i \), the following relation holds in general

\[F_{ik} \geq R_{ik}. \]

For notational convenience, we assume that the tasks are given in order of decreasing priority, i.e. task \(\tau_1 \) has highest priority and task \(\tau_n \) has lowest priority.

\[\text{Legend:} \]
- \(\varphi \) (absolute) activation jitter
- \(\tau \) preemptions by higher priority tasks
- \(\ell \) execution
- \(\text{a} \) release
- \(\text{w} \) (absolute) worst-case deadline
- \(\text{r} \) (absolute) best-case deadline

\[\text{Fig. 1: Basic model for a periodic task } \tau_i \text{ with (absolute) activation jitter } AJ_i. \]

\[\text{2 Existing results} \]

The \textit{worst-case response time} \(WR_i \) and the \textit{best-case response time} \(BR_i \) of a task \(\tau_i \) are the largest and the smallest (relative) response time of any of its jobs, respectively, i.e. \(WR_i \overset{\text{def}}{=} \sup_{\varphi} R_{ik}(\varphi) \) and \(BR_i \overset{\text{def}}{=} \inf_{\varphi} R_{ik}(\varphi) \). For worst-case deadlines at most equal to periods minus activation jitter, i.e. \(WD_i \leq T_i - AJ_i \), \(BR_i \) is given by the \textit{largest} \(x \in \mathbb{R}^+ \) that satisfies

\[x = C_i + \sum_{j \neq i} \left(\frac{x - AJ_j}{T_j} \right)^+ C_j. \]

Here, the notation \(w^+ \) stands for \(\max(w, 0) \), which is used to indicate that the number of preemptions of tasks with a higher priority than \(\tau_i \) can not become negative. To calculate \(BR_i \), we can use an iterative procedure based on recurrence relationships, starting with an upper bound, e.g. \(WR_i \).

The \textit{worst-case finalization time} \(WF_i \) and the \textit{best-case finalization time} \(BF_i \) of a task \(\tau_i \) are the largest and the smallest (relative) finalization time of any of its jobs, respectively, i.e. \(WF_i \overset{\text{def}}{=} \sup_{\varphi} F_{ik}(\varphi) \) and \(BF_i \overset{\text{def}}{=} \inf_{\varphi} F_{ik}(\varphi) \). The \textit{worst-case (absolute) finalization jitter} \(FJ_i \) of task \(\tau_i \) is the largest difference between the finalization times of any two of its jobs, i.e.

\[FJ_i \overset{\text{def}}{=} \sup_{\varphi, k, \ell} (F_{ik}(\varphi) - F_{i(\varphi)}). \]
Finalization jitter analysis presented in [2] is based on $FJ_i \leq WF_i - BR_i$, where BR_i is determined using Equation (2).

3 Contributions

From Equation (3) we derive $FJ_i \leq WF_i - BF_i$. The finalization jitter analysis presented in [2] is therefore pessimistic for two reasons; firstly $BF_i \geq BR_i$ for $AJ_i > 0$; see Equation (1) and secondly BR_i as determined by Equation (2) is pessimistic for worst-case deadlines larger than periods minus activation jitter [1]. We will illustrate this by means of an example and subsequently present a conjecture for best-case finalization time analysis.

Table 1 presents the characteristics of our example task set T_1 consisting of three tasks, and Figure 2 shows a time-line for T_1 with $BF_3 = 3$ and $BR_3 = 2.4$ of task τ_3, hence $BF_3 > BR_3$. Using Equation (2) yields a value $BR_3 = 2$, which is pessimistic, i.e. too small. A conjecture for exact best-case response time analysis of tasks with arbitrary deadlines that are scheduled using FPPS has been presented in [4].

<table>
<thead>
<tr>
<th>Task</th>
<th>T</th>
<th>C</th>
<th>AJ</th>
<th>BF</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>τ_2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>τ_3</td>
<td>7</td>
<td>2</td>
<td>0.6</td>
<td>3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 1 Task characteristics of T_1 and values for best-case finalization times and response times.

Fig. 2 Time-line for T_1 with a best-case finalization time $BF_3 = 3$ and a best-case response time $BR_3 = 2.4$ for job τ_3 of task τ_1.

Conjecture 1 The best-case finalization time BF_i of task τ_i with $T_i - AJ_i < WD_i$ is given by

$$BF_i = \max_{0 \leq k < w_{\ell_i}} (BR'_i((k+1)C'_i) - kT_i).$$

where w_{ℓ_i} is the worst-case number of jobs of τ_i in a level-i active period\(^\dagger\), and $BR'_i((k+1)C'_i)$ is the best-case response time of a task τ'_i with a computation time $C'_i = (k+1)C_i$, a period equal to its worst-case deadline, i.e. $T'_i = WD'_i$, a worst-case deadline WD'_i given by

$$WD'_i = WD_i + \begin{cases} 0, & k = 0 \\ kT_i - AJ_i, & \text{otherwise} \end{cases}.$$

\(^\dagger\) A level-i active period is the longest interval in which the sum of pending loads is higher than 0 for tasks with a priority equal to or higher than the priority of task τ_i; see [3]. The length of the longest level-i active period is finite for all $1 \leq i \leq n$ when either (i) the utilization factor $U^T = \sum_{1 \leq j \leq n} C_j$ is smaller than 1 or when (ii) U^T is equal to 1, the activation jitter of all tasks of \mathcal{T} are equal to zero, and the least common multiple of the periods of all tasks of \mathcal{T} exists.
and a best-case deadline BD_i equal to its computation time, i.e. $BD_i = (k + 1)C_i$.

Based on Conjecture 1, we find $w\ell_3 = 3$ and $BF_3 = \max(2, 9 - 7, 17 - 14) = 3$.

Note that for $w\ell_i = 1$, (4) becomes equal to the solution of (2). Hence, the conjecture therefore applies for tasks with arbitrary deadlines.

References