Introduction to the Special Issue on the 2009 IEEE International Solid-State Circuits Conference

The IEEE International Solid-State Circuits Conference (ISSCC) is the foremost global forum for presenting advances in solid-state circuits and systems-on-a-chip. Every year since its very first issue, the IEEE JOURNAL OF SOLID-STATE CIRCUITS has highlighted some well-received papers from the most recent ISSCC in special issues. This special issue is for the ISSCC conference held in San Francisco, CA, February 8–12, 2009. Session chairs and co-chairs initially recommended papers for publication, with final decision for inclusion based on peer review.

I. HIGH-PERFORMANCE DIGITAL PAPERS

Next-generation processors, SoCs, and their building blocks demonstrate continuous improvement in functionality and computing capability with increased efficiency and flexibility. Smaller transistors help, but it is evident that future progress in microelectronics will more and more rely on efficient circuits and system architectures. This can be also seen in the three papers in this section, chosen from the ISSCC 2009 session on microprocessor technologies.

The first paper, by Rusu et al., describes a 2.3 B transistor processor with eight dual-threaded 64-bit cores and 24 MB shared L3 cache in a 45 nm 9-metal process. Multiple clock and voltage domains are used to reduce power consumption. Long channel devices and cache sleep mode are used to minimize leakage. Core and cache recovery improve manufacturing yield and enable multiple product flavors from the same silicon die.

In the second paper, Saito et al. demonstrate an efficient solution for management of the increasingly large on-chip memories in SoCs. The on-chip memory has been moved onto a separate and dynamically reconfigurable memory chip. The memory chip is then stacked on the logic chip by using a three-dimensional packaging technology with high-bandwidth 10 µm-pitch micro-solder interconnects. This enables high-throughput inter-chip communication in a system-in-package, relieving the area penalty induced by large on-chip memory sizes.

The third paper, by Tokunaga et al., presents an area- and power-efficient method to protect hardware encryption systems. A switched capacitor circuit equalizes the current and isolates the critical encryption activity from the external power supply. This eliminates the side-channel information leakage through the power supply, used by attackers to reveal the secret encryption keys. Utilizing this technique, a secure encryption system is implemented in a 0.13 µm CMOS technology with 7.2% area and 33% power overheads and 2× performance degradation. After ten million side-channel attacks, the secret encryption key still could not be revealed.

II. LOW-POWER DIGITAL PAPERS

The Low-Power Digital section consists of six papers describing advances in multimedia processors and digital wireless communication. The papers mainly focus on improving energy efficiency, to enable low-power applications like human body monitoring. Close combination of algorithm and hardware design, and scalable functionality such as multi-standard capabilities result in lower power dissipation and lower cost solutions. All these developments are paving the way to the Green IT era.

The first paper, by Kim et al., describes a real-time multi-object-recognition processor featuring a multicaintegrable network-on-chip (NOC), a biologically inspired neural perception engine (NPE), and a multi-object recognition algorithm based on human-like visual perception. This 201.4 GOPS processor can achieve 60 frame/sec recognition of up to 10 different objects for VGA video input while dissipating 496 mW.

The latest developments in display panels are driving High-Definition (HD) video into the mainstream. The handset is the most affordable and easily accessible device for capturing video. In the next two papers, SoCs conceived to make Full-HD video affordable to the consumer world are presented.

The second paper, by Ding et al., introduces a scalable multi-view video-encoding which supports both multiple-HD and Full-HD resolution. The chip can decode video up to 1-view Quad Full-HD (4096 × 2160), 3-view Full-HD or 7-view HD for multiple or 3-D-display applications. The chip achieves a 212 M pixel/sec throughput, which corresponds to a 3.4 to 7.7 times improvement on previous reports. Video resolution up to Full-HD is thus no longer limited to large or costly systems.

In the third paper, Iwata et al. describe the first Full-HD 1080p30 mobile application processor in 65 nm CMOS to support multi-standard video codec for handsets. The researches apply a heterogeneous multiprocessor architecture to obtain high performance, flexibility, and low-power consumption in video codec processing using low-power DDR-SDRAM. This development is likely to lead at very short term to the first handset with Full-HD camcording capability.

The fourth paper, by Van Helleputte et al., presents a fully integrated, flexible and ultra low power ultra-wide-band impulse radio (IR-UWB) receiver, capable of cm-accurate ranging. The first IR-UWB standard was defined in 802.15.4a as a competitor for Bluetooth and Zigbee able to provide better energy efficiency. A complete combination of RF front-end and baseband circuitry consumes 4.2 mW, resulting in an energy dissipation of 108 pJ/pulse. This kind of work promises to enable the creation of batteryless wireless sensor units for applications like on-body monitoring.

The signal processing in the low power digital domain is moving from full-hardware solutions to programmable ones. Flexible hardware and reusable software configurations, the
so-called “Hard Software and Soft Hardware,” are expected in the next generation of applications. The last two papers of this section focus on programmable hardware solutions for RF functions and heterogeneous architectures.

In the fifth paper, Busson et al. introduce programmability in RF functions by moving most of analog processing to the digital domain in a Digital Channel Multiplexer (DCM) for a satellite outdoor unit running at 1 GHz clock frequency and implemented in a mixed oxide dual voltage 65 nm CMOS technology. Using the DCM, it is not necessary to have a SAW filter for each channel. The chip consumes less than 1022 mW: a power reduction of more than 5× versus existing state-of-the-art solutions.

In the last paper, Kaul et al. describe the design of a reconfigurable 4-way SIMD accelerator engine fabricated in 45 nm high-k/metal-gate CMOS. The main target is the acceleration of vector processing in power-constrained mobile microprocessors. The SIMD accelerator is reconfigured to perform 4-way 16 bit × 16 bit multiplications, 32 bit × 32 bit multiplications, 4-way 16 bit additions, 2-way 32 bit additions or 72 bit additions with a wide supply voltage range (1.3 V–230 mV). This accelerator computes at 2.8 GHz maximum frequency consuming 278 mW at 1.3 V. It reaches a maximum energy efficiency of 494 GOPS/W at 300 mV supply.

III. MEMORY PAPERS

Memory continues to play an essential role in all modern VLSI systems. As CMOS technology scaling has advanced well below 100 nm in feature size, many conventional memory technologies are facing severe challenges while new technologies are being explored for the future applications. In this section, five technical papers are chosen from the three memory sessions at 2009 ISSCC. These papers address a wide range of critical challenges facing today’s memory design.

The first paper, by Wang et al., reports the industry’s first 32 nm SRAM design on a high-performance CMOS technology with high-k metal gate. The chip achieves up to 4 GHz operating frequency at 1.0 V along with a large voltage scaling window. The new design also introduces an integrated power management scheme that is able to reduce leakage power by over 2×.

The second paper, by Kang et al., introduces an 8 Gb DRAM design by using Through-Silicon-Via (TSV) technology. This 4-stack 3-D design features master–slave architecture and significantly reduces both active (50%) and standby (25%) power consumption. By reducing the IO loading, this design also achieves over 1600 Mb/s speed using a DDR3 interface.

Memory bandwidth has become particularly important for graphics applications. The next paper, by Kho et al., introduces a high-performance DRAM design in a 75 nm process. This design achieves IO speed of 7 Gbs/pin for 1 Gb DDR5 DRAM by using various circuit and architecture techniques, including array configuration and new IO interface design.

The following paper, by Saito et al., presents a new wireless chip to chip IO interface in a NAND based flash stacking for Solid-State-Drive (SSD) applications. The design uses a programmable bus based on inductive-coupling to achieve up to 2 Gbs data rate in a relayed transmission between 64 stacked NAND chips, while reducing both circuit area and power consumption.

The last paper, by Shiga et al., presents an emerging memory. It describes the highest level of integration for a chain FeRAM architecture to date with a density of 128 Mb. This stand-alone design features a 1.6 Gb/s DDR2 interface, new bitline architecture, and a small parasitic capacitance sensing scheme.

IV. TECHNOLOGY DIRECTIONS PAPERS

This section includes nine papers from the Technology Directions session of ISSCC 2009. The first three papers describe different implementations of networks of wireless sensor/actuators. The energy available in the each network node is severely limited by its physical dimensions and weight, making it especially important to realize energy-efficient circuit operation.

In the first paper, Daly et al. discuss a wireless node able to control the flight of a moth exploiting electric stimulation of the animal’s muscles. The main focus of the paper is on the highly duty-cycled pulsed-ultra-wideband receiver, which requires 0.5- to 1.4 nJ/bit and achieves a sensitivity of –76 dBm at a data rate of 16 Mb/s (10^{-3} BER). The second paper, by Flatscher et al., describes a sensor node to be used in a wireless tire pressure monitoring system for automotive applications. Also in this case the paper mainly deals with the low-power transceiver designed for this system. The current consumption of the transceiver is 6 mA in transmit mode with a transmit output power of 1 dBm and 8 mA in receive mode with a sensitivity of –90 dBm, a data rate of 50 kBit/s and a bit error rate of 10^{-2}. The third paper, by Yoo et al., discusses a body sensor network built using sensor nodes that can be embedded in adhesive bandages. The sensor nodes obtain the energy they need to work via electromagnetic coupling to the controller, which is attached to a relatively large battery. Details are given on the energy transfer system (which includes a rectifier with 54.9% efficiency), on the low-power sensing chain (which realizes electrocardiogram measurements while consuming 12 μW), and on the network controller IC.

The following two papers discuss advanced solutions to provide miniature sensor nodes with energy. The work by Ramadass et al. focuses on rectifiers that can improve the transfer of power to the load when used together with piezoelectric energy scavengers. An improvement of more than 4× in power extraction capability over conventional full-bridge rectifiers and voltage doublers is demonstrated. The contribution by Frank et al. presents a stabilized power supply exploiting a chip-integrated fuel cell based on hydrogen storage in a palladium layer. The fuel cell system delivers a maximum power output of 450 μW/cm².

The next two papers present novel oscillators. Villard et al. discuss in detail a nano-sized oscillator based on spin momentum transfer torque and a dedicated wideband amplifier. This device shows a tuning range that can reach 100% for frequencies between 1 and 10 GHz, paving the way to innovative frequency synthesis solutions. The paper by Ruffieux et al. describes a temperature-stabilized silicon resonator achieving 3.2 μW power dissipation at 1 V for real-time clock applications.

The paper by Young et al. discusses near-to-long-term optical interconnect solutions, forecasting an energy efficiency better
than 0.3 pJ/b for optical interconnects implemented in 16 nm CMOS and exploiting photonic components integrated in the backend.

Finally, the contribution by Ishida et al. presents a flexible electronic sheet integrating 2 V organic CMOS electronics and antennas with silicon LSI chips. This device is able to map the spatial distribution of EMI interference sources up to 1 GHz and demonstrates how silicon and organic electronics can be integrated to obtain at the same time mechanical flexibility, large area capability and performance.

Atila Alvandpour, Guest Editor
Linköping University
Linköping, SE-581 83 Sweden

Kazutami Arimoto, Guest Editor
Renesas Corporation
Itami, Hyogo, 664-0005 Japan

Eugenio Cantatore, Guest Editor
Eindhoven University of Technology
Eindhoven, 5600 MB The Netherlands

Kevin Zhang, Guest Editor
Intel Corporation
Hillsboro, OR 97124 USA

Atila Alvandpour (M’99–SM’04) received the M.Sc. and Ph.D. degrees from Linköping University, Sweden, in 1995 and 1999, respectively.

From 1999 to 2003, he was with the Circuit Research Laboratory, Intel Corporation, where he developed high-performance circuits for advanced microprocessors. Since 2004, he has been the head of the Electronic Devices division, conducting research on integrated circuits and systems with special focus on efficient wireless front-ends, analog-to-digital data converters, on-chip clock generators and clock synthesizers, sensor interface electronics, high-speed signaling techniques, low-power/high-performance digital circuits, and chip design techniques. He has published over 70 papers in international journals and conferences, and holds 24 patents.

Prof. Alvandpour has served on several technical program committees of IEEE and other international conferences, including the IEEE International Solid-State Circuits Conference (ISSCC). He is a senior member of IEEE.

Kazutami Arimoto (M’88–SM’05) received the B.S., M.S., and Ph.D. degrees in electronic engineering from Osaka University, Osaka, Japan, in 1979, 1981, and 1993, respectively.

He joined the LSI Laboratory, Mitsubishi Electric Corporation, Itami, Hyogo, Japan, in 1981. Since then, he has been engaged in the design and development of DRAMs, and IPs for system LSI. He transferred to Renesas Technology Corporation in 2003. Currently, he focuses on wireline/wireless communication IPs, memory based design IPs and reconfigurable processor for multimedia, security, network, mobile applications and future intelligent systems. He is currently interested in mixed-signal design for system LSI and solution, low-power/low-voltage design, high-bandwidth architecture, high-speed wire/wireless communication, intelligent memory-IP, SOI circuit technology, reconfigurable processor and safety, and secure dependable systems. He has 192 U.S. patents and 69 Japanese patents issued. He has been a guest professor at Ritsumei University since 2007.

Dr. Arimoto is a member of the Institute of Electronics, Information and Communication Engineering (IEICE) of Japan and a senior member of IEEE.
Eugenio Cantatore (M’98) received the Ph.D. degree in electrical engineering from Politecnico di Bari, Bari, Italy, in 1997.

From 1994 to 1999, he was first a Ph.D. student and then a Fellow at the European Laboratory for Particle Physics (CERN) Geneva, Switzerland. In 1999, he joined Philips Research, Eindhoven, The Netherlands as a Senior Researcher and in 2007 he became an Assistant Professor in the Faculty of Electrical Engineering of the Eindhoven University of Technology. His research interests include the design of electronic circuits exploiting emerging technologies, with special focus on circuits manufactured with organic materials, as well as the design of integrated microsystems for ultra-low-power applications. He has authored or co-authored more than 70 papers in journals and conference proceedings.

Dr. Cantatore is a member of the Technical Program Committees of ESSDERC and ISSCC. In 2006, he received the Beatrice Winner Award for Editorial Excellence from ISSCC.

Kevin Zhang (SM’07) received the B.S. and Ph.D. degrees in electrical engineering from Tsinghua University, Beijing, China, and Duke University, Raleigh, NC, respectively.

He is an Intel Fellow and Director of Advanced Design at Logic Technology Development, Intel, where he is responsible for developing advanced design collaterals, including digital, analog/mixed-signal, and memory circuits for Intel’s future process development and product applications. Prior to this role, he led embedded memory technology development from 90 nm to 32 nm node at Intel. He has published over 40 papers at international conferences and technical journals, and holds over 45 U.S. patents in the area of integrated circuit technology.

Currently, Dr. Zhang serves as a member of the ISSCC technology program committee. He is a senior member of the IEEE.