Non-critical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture

Citation for published version (APA):

DOI:
10.1109/LPT.2006.883199

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Aug. 2019
Noncritical Waveguide Alignment for Vertically Coupled Microring Using a Mode-Expanded Bus Architecture

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher

Abstract—Vertically coupled microrings in an all-pass filter configuration are fabricated with a range of waveguide misalignments deliberately introduced into the lithography masks to demonstrate noncritical fabrication requirements. The microrings have a mode-expanded bus design which allows a greatly reduced variation in power coupling coefficient—only 6% for fabrication misalignments as high as 1 μm. This represents a five-fold improvement in fabrication tolerance when compared with conventional designs.

Index Terms—Active–passive integration, coupling coefficient, microring resonator, mode-expanded bus waveguide, vertical coupling, wafer bonding, waveguide coupling, waveguide misalignment.

I. INTRODUCTION

In recent years, growing research activity has been concentrated on photonic components using microring resonators. Due to their compact feature size and the ability to perform optical signal processing, microring resonators have become an attractive candidate building block for large-scale integrated photonic circuits [1]. To date, practical components including add–drop filters [2], switch fabrics [3], all-optical logic gates [4], and lasers [5] have been demonstrated. The majority of the components are realized using two-dimensional laterally coupled architectures, where the microring resonator and the bus waveguides lie in the same epitaxial plane. This results in a tight fabrication tolerance since the coupling gap between the microring and the bus waveguide has to be defined by electron-beam lithography. It has been argued that a vertically coupled architecture offers a much wider flexibility from the fabrication point of view [6]. Here waveguides are integrated in three dimensions with microring resonators in one epitaxial plane and single-mode input–output bus waveguides in a second plane for the purpose of coupling light in and out of the microring. The vertical separation is now controlled to the enhanced tolerance of epitaxial growth. The fact that the two waveguides now lie on different epitaxial planes further facilitates active–passive integration.

The fabrication of vertically coupled microring components based on III–V semiconductors may be implemented by means of a wafer bonding process in order to facilitate waveguide fabrication on both sides of the same wafer [6]. This, however, leads to a critical lithographic lateral alignment requirement for the ring and bus waveguides, which will induce a variation in waveguide offset and a resultant deviation of coupling coefficient from wafer to wafer [7]. While precision alignment marks can be implemented in the mask set, the run-out experienced for even low levels of wafer warping or contraction in the adhesive materials can also lead to deviation in waveguide misalignment across a wafer, causing significant device-to-device performance variation. Recent simulation studies have, however, shown that a relaxed fabrication tolerance can be achieved by employing a mode-expanded bus waveguide design [10]. This letter reports the first experimental verification of the reduced variation in coupling coefficient with bus waveguide misalignment for such mode-expanded bus waveguides.

II. DEVICE STRUCTURE

A series of vertically coupled passive microring waveguides are fabricated with lateral misalignment deliberately introduced onto the lithography mask. The bus waveguides are first fabricated by epitaxial growth and selective etching. An insulating cladding layer is then applied to the structure prior to wafer bonding to another substrate. The sample is then inverted, and the substrate of the original wafer is removed by etching. Finally, the microring waveguide is patterned and fabricated by standard lithography and etching subsequent to mask alignment. The devices are fabricated in all-pass filter configurations, with the microring waveguide vertically coupled to a single bus waveguide. The ring and bus waveguide are InGaAsP quaternaries having bandgaps of 1.4 and 1.3 μm and thicknesses of 280 and 400 nm, respectively. The waveguide geometries are designed to enhance the coupling of the fundamental mode between the microring and bus. Fig. 1(a) shows an optical microscope image of the top view of two fabricated devices.

Cross-sectional views of the coupling regions between the microrings and the bus waveguides of different widths are shown in Fig. 1(b). Lateral misalignment is defined as the offset measured between the center of the microring and bus waveguide, as indicated in Fig. 1(b).

III. EXPERIMENT

Transmission measurements across a series of design variants have been carried out in order to quantify the influence of the
waveguide offset on the power coupling between the ring and bus waveguide using a continuous-wave tunable external-cavity laser. A polarizer consisting of a TM polarization-stripping fiber is used to provide a polarization extinction ratio in excess of 20 dB. While this work focused on the TE polarization, the results obtained on coupling sensitivity are general and the trend can be applied to TM polarization as well. The polarized light is coupled to the bus waveguide using a polarization-maintaining lensed fiber. The light transmitted through the device is collected using a second lensed fiber for spectrally resolved intensity measurement to subsequently extract the coupling coefficient. The effective index of the ring waveguide is first calculated from the free spectral range of the transmission spectrum. A least squares algorithm is subsequently used to implement a Z-transform analytical fit to the transmission spectrum. A good estimation of waveguide loss in the microring can be obtained using the method elaborated in [8].

Fig. 2(a) shows an example of the measured and fitted transmission spectrum. Polarization mode splitting is observed in a number of the transmission spectrum due to the existence of polarization rotation in the microring [9]. Devices are subsequently assessed using focused-ion-beam etching to measure the exact waveguide misalignment. Fig. 2(b) shows a focused ion beam microscope image of a device with a 20 μm × 5 μm etch profile to a depth of 0.7 μm to reveal the buried bus waveguide. The misalignment value is subsequently measured.

The extracted coupling coefficient is plotted against the measured waveguide misalignment in Fig. 3. The solid diamonds in the figure denote the coupling coefficient dependence on waveguide misalignment between a 1.8-μm-wide microring with a radius of 80 μm and a 1.8-μm bus waveguide. Here a maximum coupling of above 0.8 is achieved for a −0.5-μm offset, reducing significantly to 0.6 for a relative offset of only 0.2 μm. A variation in coupling coefficient of 29% is observed across a misalignment range of 1 μm. The solid squares show the coupling coefficients for otherwise identical 60-μm radius microrings as the bus waveguide is moved even further from the microring.
microring with a radius of 10 μm and a 2.0-μm mode-expanded bus waveguide. The device consists of a double-taper waveguide architecture, as shown in the inset of Fig. 4, to provide discrimination against higher order modes and to facilitate enhanced fiber coupling efficiency. The length of the mode-expanded waveguide and the taper section are both 200 μm. Negligible alignment sensitivity is observed for the mode-expanded bus design, even for such low radius designs. A coupling variation of only 6% is measured across a misalignment range of 1 μm. This shows a marked improvement in coupling coefficient sensitivity to waveguide misalignment when compared to straight waveguide designs.

IV. CONCLUSION

The influence of misalignment between the microring and bus waveguide on the coupling coefficient is investigated experimentally. A mode-expanded bus waveguide design for reduced sensitivity of the coupling coefficient to waveguide misalignment is validated. A variation in coupling coefficient of only 6% is measured for a misalignment range of 1 μm, showing the applicability of the proposed design for relaxed mask alignment tolerance which may facilitate wafer scale fabrication.

ACKNOWLEDGMENT

The authors would like to acknowledge insightful discussions with U. Troppenz and H. Heidrich of Heindrich-Hertz Institute, Germany.

REFERENCES