In situ spectroscopic ellipsometry for atomic layer deposition

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Sep. 2020
In Situ Spectroscopic Ellipsometry for Atomic Layer Deposition

Presented at the 52nd SVC Technical Conference in Santa Clara, CA, in the Optical Coatings session on May 14, 2009

Abstract
The application of in situ spectroscopic ellipsometry during thin film synthesis by atomic layer deposition (ALD) is examined for results obtained on Al2O3, TaN, and TiN films with thicknesses ranging from 0.1 to 100 nm. By analyzing the film thickness and the energy dispersion of the optical constants of the films, the layer-by-layer growth and material properties of the ALD films can be studied in detail. The growth rate per cycle and the nucleation behavior of the films can be addressed by monitoring the thickness as a function of the number of cycles. It is shown that from the energy dispersion relation, insight into the conductive properties of metallic films can be derived. Moreover, the shape of the dispersion relation can be used to discriminate between different material compositions.

Introduction
With the optical, mechanical, electrical, and chemical properties of ultrathin films (<100 nm) being used in numerous applications, the synthesis of such functional thin films has become a key technology in present-day society. In this respect, the miniaturization and diversification in the semiconductor industry can be considered the main technological driver for developments in ultrathin film synthesis [1]. In particular for manufacturing steps where the emphasis lies on atomic scale thickness control and on conformal film growth in high-aspect ratio structures, atomic layer deposition (ALD) is currently the primary candidate to fulfill the strict requirements on ultrathin film growth [2,3].

By the virtue of separate self-limiting surface reactions, ALD has the ability to control film growth and material properties at the atomic level, as schematically illustrated in Figure 1. The amount of material deposited in an ALD cycle is determined by the amount of surface adsorption sites initially available and becomes at a certain point independent of the particle flux impinging on the surface. When sufficient precursor and reactant molecules are dosed to saturate the surface chemistry, a (sub)monolayer of material is deposited per cycle. ALD provides therefore "discrete" thickness control, i.e., the ability to increase the film thickness layer-by-layer by repeating ALD cycles. Moreover, ALD film growth is highly uniform and yields excellent conformality because at every available surface site (a maximum of) one precursor/reactant molecule can adsorb regardless the incoming particle flux or whether these surface sites are distributed over large surface areas or in demanding 3D topologies.

Over the years many ALD processes for thin films of inorganic materials have been developed, ranging from pure elements to compounds with oxygen, nitrogen, and sulphur, as reviewed by others [2,4]. Recently, an ALD scheme for organic materials was even designed using bifunctional monomers [5]. Well-established ALD processes have already been implemented for synthesis of ultrathin Al2O3, HfO2, and TiN films in industrial applications.

The successful integration of ultrathin films in industrial applications relies, however, not only on the development of methods to synthesize these ultrathin films, but also on the availability of accurate analytical or metrology techniques to determine the thickness and properties of these films. The ALD process lends itself particularly well for in situ studies, because the inherent cycle-by-cycle deposition process allows halting

Figure 1. Atomic layer deposition (ALD) illustrated for two half-cycles of a typical deposition process. The first half-cycle consists of (a) self-limiting adsorption of the precursor molecules on the surface groups and (b) a purge step to remove the volatile reaction by-products and the excess of precursor dosed. After the first half-cycle, a submonolayer of precursor has chemisorbed on the surface. During the second self-limiting surface reaction (c), the surface is exposed to reactant molecules that react with the surface groups of the adsorbed precursor. The second half-cycle is completed by (d) another purge step to remove the volatile reaction by-products and the excess of reactant dosed. After the full ALD cycle, a submonolayer of material is deposited with the surface groups similar to those at the start of the cycle. Subsequently, the cycle can be repeated to deposit a film with the thickness targeted.
the deposition for sensitive measurements in between the ALD cycles. Data acquisition in between the cycles provides, thus, the opportunity to monitor and address various aspects of the ALD growth process. Considering the amount of data that can easily be acquired, i.e., from cycle-by-cycle acquisition to, typically, acquisition after every 10-100 cycles, the influence of thickness on the material properties can be addressed in detail.

The majority of in situ studies have mainly focused on elucidating the fundamentals of the ALD reaction mechanism. Commonly employed techniques are infrared spectroscopy, mass spectrometry, and quartz crystal microbalance to provide insight into the surface species and volatile reaction by-products that are formed in the ALD half-cycles. Recently more emphasis has been put on in situ diagnostics that can be used online for process optimization, process monitoring, and for additional control of the deposition process at the atomic level.

In this paper, the merits of the optical technique of spectroscopic ellipsometry are discussed for in situ monitoring the film growth of Al2O3, TaN, and TiN films by ALD. In this respect, it is mentioned that an extensive review has recently been published discussing the application of in situ spectroscopic ellipsometry to study various aspects of ALD of Al2O3, HfO2, Er2O3, TiO2, Ta2O5, TiN, and TaN films [6].

Spectroscopic ellipsometry
Over the years, spectroscopic ellipsometry (SE) was demonstrated to be a valuable diagnostic for determination of the thickness and (optical) properties of thin films. Because SE is an optical and non-intrusive technique detecting the change in polarization of light upon reflection from a surface, it has been commonly applied in situ to study the film growth.

Figure 2. Photograph of a J.A. Woollam, Inc., M2000 spectroscopic ellipsometers fitted on (a) the FlexAL™ and (b) the OpAL™ reactors of Oxford Instruments [11,12]. Both commercial reactors are installed in the clean room facility of the Eindhoven University of Technology.

continued on page 38

THE WORLD'S LEADING THIN FILM SOLAR CELL PRODUCERS USE SCI CATHODES AND PMI TARGETS

End Blocks Side Mount e-Cathode™ TRIM-Bar™ Rotary Targets Planar Targets

Chroma Moly ITO AZO CuIn

375 Alexander Drive Owatonna, MN 55060 ph. (507) 455-9140

5625 Brisa St - Suite A Livermore, CA 94550 ph. (925) 245-9629

WWW.SPUTTERINGCOMPONENTS.COM WWW.PROCESSMATERIALS.COM

2010 Spring Bulletin 37
In Situ Spectroscopic Ellipsometry

continued from page 37

growth as reported for many physical and chemical vapor deposition methods [7,8]. The most important requirement to employ in situ SE during ALD is optical access on the reactor and the deposition on optically flat substrates that allow for specular reflection of the ellipsometer light. The concept of in situ SE for thickness monitoring during an ALD process was already reported by Klaus et al. [9], however, the application of in situ SE did not settle in ALD research until approximately a decade later [10]. The knowledge, accuracy, and also user-friendliness of ellipsometer systems and related data analysis have improved in the recent years, as can be expressed by the ability to detect changes in nominal film thickness equivalent to 0.01 monolayer.

The in situ SE measurements described in this work were carried out by J.A. Woolam, Inc., M2000 rotating compensator ellipsometers. The M2000U visible and near-infrared extended (0.75-5.0 eV) ellipsometer was proven particularly powerful to study metallic films. The M2000D visible and ultraviolet extended (1.2-6.5 eV) ellipsometer was particularly suited to study (high) band gap materials. The typical configuration of the ellipsometers on the ALD reactors used in this work is shown in Figure 2. The angle of incidence of the light was fixed to 68 degrees with respect to the normal of the substrate.

From the ellipsometric data obtained over a certain photon energy range, the film thickness and the dispersion relation of the optical constants can be deduced. The optical constants can be expressed in the refractive index and extinction coefficient, but they are often represented in terms of the real (\(\varepsilon_1\)) and imaginary (\(\varepsilon_2\)) parts of the complex dielectric function \(\varepsilon\) [7]. From the optical constants, several material properties of thin films can be derived such as the optical band gap of dielectric materials and the conductive properties of metallic films.

The optical behavior of a material becomes immediately apparent from its energy dispersion in optical constants. For the photon energy range of 0.75-6.5 eV of the ellipsometers employed in this work, the real and imaginary parts of the dielectric function of Al2O3, Ta2N5, and TiN films are shown in Figure 3. These ALD-deposited materials clearly demonstrate the change in dielectric function when comparing transparent (Al2O3), semitransparent (Ta2N5), and fully absorbing (TiN) materials.

Al2O3 is non-absorbing (\(\varepsilon_1 = k = 0\)) over the whole range probed and its optical constants can therefore be described by a Cauchy relationship. The refractive index of this 109 nm thick Al2O3 film is 1.63±0.02 at 1.96 eV. Ta2N5 is a semiconducting material and has an optical band gap that falls in the photon energy range of most common ellipsometers. Accordingly, the dielectric function can be parametrized using (three) Tauc-Lorentz oscillators. The refractive index and Tauc optical band gap for this 49 nm thick Ta2N5 film are 2.68±0.02 at 1.96 eV and 2.5±0.1 eV. The conductive properties of the TiN film are evident from the intraband absorption in the infrared part of the photon spectrum caused by free conduction electrons in the material. Describing this absorption by a Drude-Lorentz oscillator allows to extract electrical properties from the optical dielectric function, such as electrical resistivity, electron mean free path, and electron density [12,13]. Moreover, two Lorentz oscillators are added to the Drude term to account for interband absorptions in TiN. The 12 nm thick TiN film has a refractive index of 1.3±0.02 at 1.96 eV. More details on the optical parametrizations employed and the method of direct inversion in Figure 3 can be found in Ref. [6].

ALD Studied by In Situ SE

Monitoring ALD film growth

The film thickness is among one of the most important parameters for the application of ALD films. The thickness can be precisely controlled by selecting the appropriate number of ALD cycles. Monitoring the ALD process by in situ SE allows determining the film thickness at any stage during the process and to calculate the ALD growth per cycle during the film growth. Moreover, SE provides the opportunity to control the process such that the film deposition can be actively stopped when the thickness targeted has been reached.

The film thickness as a function of ALD cycles as determined by in situ SE is shown in Figure 4 for the ALD processes of Al2O3 [14], Ta2N5 [15], and TiN [13]. As generally expected for an ALD process, the thickness increases linearly with the number of cycles; although in some cases a (pronounced) film nucleation effect can occur. In the linear region, the growth rates, i.e., the amount of material deposited per cycle, can be obtained from linear regression analyses of the data. For the data in Figure 4 this resulted in growth rates of 0.118±0.005, 0.054±0.005, and 0.041±0.005 nm/cycle for the Al2O3, Ta2N5, and TiN films, respectively. It is noted that the growth rates of ALD processes typically are (considerably) smaller than one monolayer (~2-3 Å) per cycle. Among others, this can be related to the number of adsorption sites available on the surface and to steric hindrance effects during precursor adsorption.

The increase in film thickness during the first deposition cycles reveals that the ALD growth of Al2O3 proceeds immediately on an H-terminated Si substrate. Similarly, ALD of Ta2N5 on a native oxide covered Si substrate shows immediate linear growth. These two growth curves demonstrate that these metal-organic precursor molecules readily react with the substrates employed. A completely different nucleation behavior is observed for ALD of TiN on a thermally grown SiO2 surface. A distinct nucleation delay is observed and the growth

![Figure 3. Real (\(\varepsilon_1\)) and imaginary (\(\varepsilon_2\)) parts of the dielectric function of (a) Al2O3 (Cauchy), (b) Ta2N5 (Tauc-Lorentz), and (c) TiN (Drude-Lorentz) films deposited by ALD. The dielectric function is shown as obtained by direct inversion (symbols) and as described by the optical parametrization (solid lines) [6]. The optical parametrizations used are indicated in between parentheses. The dotted/dashed lines indicate the separate contributions of the oscillators to the imaginary part of the dielectric function.](image-url)
Figure 4: Film thickness as a function of number of ALD cycles for growth of (a) Al₂O₃ from Al(CH₃)₃ precursor and O₂ plasma on an H-terminated Si substrate, (b) Ta₃N₅ from Ta[N(CH₃)₂]₅ precursor and NH₃ plasma on a native oxide covered Si substrate, and (c) TiN from TiCl₄ precursor and H₂-N₂ plasma on a thermally grown SiO₂ substrate. The film thicknesses are calculated using the optical parametrizations shown in Figure 3.

starts only after ~20 ALD cycles. This behavior is consistent with the inability of the TiCl₄ precursor molecules to react with the siloxane bridges mainly present on the thermal SiO₂ substrate. The slow nucleation is caused by the limited surface density of defect sites and OH groups on which the TiCl₄ can absorb and nucleate to start film growth.

These results demonstrate the ability of in situ SE to accurately determine the film thickness of the nanometer thick ALD films. Moreover, cycle-by-cycle data acquisition enables to monitor the film nucleation and linear growth region in detail. In this respect it is mentioned that the determination of the growth rate during deposition allows for fast optimization of the ALD process, where the influence of deposition parameters on the growth rate can easily be obtained from a single deposition run [6].

Monitoring electrical film properties

Insight into the electrical properties of conductive films can be derived from the dielectric function by adopting the Drude parameterization. Therefore, monitoring the ALD film growth by in situ SE provides the opportunity to investigate the influence of ALD process conditions on the electrical film properties obtained [6,11,13].

The resistivity of the TiN films as determined from in situ SE and ex situ four-point probe (FPP) measurements is shown in Figure 5 as a function of deposition temperature in the range from 100 to 400 °C. In order to make a proper comparison with the FPP resistivity determined at room temperature, first the in situ SE resistivity values obtained at the deposition temperature were corrected to values representing room temperature [13]. The resistivity values obtained by in situ SE and ex situ FPP were in good agreement, especially for films deposited at substrate temperatures above 200 °C. Both techniques show that the resistivity of the TiN films increases for depositions at lower temperatures. This effect can be related to the increase in chlorine impurity content of the films, as was determined by Rutherford backscattering spectroscopy (RBS) and shown in the inset of Figure 5. In turn, the increase in impurity content causes the electron mean free path to decrease due to more pronounced electron-impurity scattering in the film [4]. In addition, the discrepancy between the resistivity values determined by SE and FPP at low temperatures (100 °C) can also be related to the impurity content.

continued on page 40

AMETEK Dycor® mass spectrometers: High-accuracy gas composition data without the high price.

There's no easier way to read a full range of gases and contaminants. Dycor mass spectrometers offer key features and data you need without unnecessary details you don't. Both are easy to use and interpret, with near-zero learning curves.

Our Dycor unit provides residual gas analysis of contaminants and gases in your sample or process, accurately and reliably. Our ProLine™ unit provides quantitative data by employing automatic calibration and spectral deconvolution via our Process 2000 software. It's half the size of competitive products, yet delivers more performance for the money, in-lab or on-line. And its software system is simple to get up and running.

Why waste money on overengineered equipment? Everything you want is in our stable. To learn more, call us at 412-828-9040, or visit: www.ametekpi.com

Annex Table

<table>
<thead>
<tr>
<th>Concentration, process gas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>73.3%</td>
</tr>
<tr>
<td>O₂</td>
<td>19.65%</td>
</tr>
<tr>
<td>Ar</td>
<td>0.88%</td>
</tr>
<tr>
<td>H₂</td>
<td>4.37%</td>
</tr>
<tr>
<td>Re</td>
<td>1.08%</td>
</tr>
<tr>
<td>CO₂</td>
<td>300 ppm</td>
</tr>
</tbody>
</table>

Triple Crown Winner!
Performance, Price, Practicality.

AMETEK PROCESS INSTRUMENTS

2010 Spring Bulletin 39
In Situ Spectroscopic Ellipsometry

The higher impurity content and the related lower film density make the films more susceptible to post-deposition oxidation when the films are exposed to air. This directly affects the *ex situ* measurements.

Figure 5. Electrical resistivity of plasma-assisted ALD TiN films as a function of deposition temperature. The resistivity is determined by *in situ* spectroscopic ellipsometry and *ex situ* four point probe (FPP) measurements. The change in resistivity with deposition temperature can be related to the chlorine impurity content of the films as shown in the inset.

The agreement in the electrical resistivity deduced from the optical model and obtained by the FPP validates the optical Drude-Lorentz model employed to describe the dielectric function of these thin TiN films. Moreover, these results demonstrate that *in situ* SE provides an accurate means to investigate electrical properties of conductive films and their dependence on the deposition conditions.

Distinction of different material phases

The dispersion in the optical constants gives immediate insight into the optical properties of the films and, therefore, on the material properties. The influence of the ALD deposition parameters on the materials properties can therefore be deduced by monitoring the dispersion in optical constants by *in situ* SE. This is demonstrated for tantalum nitride (TaN₅) that can exist in different crystalline phases and for which it was shown that the TaN₅ phase and film properties can be tailored by varying the plasma step in the remote plasma ALD process [15].

Figure 6 shows the imaginary part (ε_2) of the dielectric functions of the TaN₅ films that were deposited using different plasma conditions in the ALD cycle. The inset shows the film composition as determined by Rutherford backscattering spectroscopy. Adding more nitrogen into the plasma, result in a transition from conductive, cubic TaN₅ to semiconductive Ta₃N₅ films. This transition is clearly visible in the dielectric function of the TaN₅ films obtained.

The dielectric function of the TaN₅ film obtained using a pure H₂ plasma in the ALD process contains a prominent Drude absorption that is related to the free conduction electrons in the film. Moreover, it is observed that the strength of the Drude absorption, i.e., a measure of the conductivity, can be increased by extending the H₂ plasma exposure time used in the ALD cycle. Admixing little N₂ (2%) to the H₂ plasma strongly reduces the magnitude of the Drude absorption in the film and the two Lorentz oscillators become clearly visible. The dielectric function of the Ta₃N₅ film deposited using a H₂–N₂ (1:1) plasma clearly differs in shape. This dielectric function is best described by a parametrization employing a Tauc-Lorentz oscillator and an additional Lorentz oscillator, which is added to account for the small absorption below the optical band gap. The dielectric function of the Ta₃N₅ film deposited using a NH₃ plasma clearly shows an optical band gap and is best described by a parametrization consisting of three Tauc-Lorentz oscillators.

From the above mentioned, it is evident that by monitoring the dielectric functions by *in situ* SE, the change in film composition and crystalline phase can already be probed during the ALD process when the film is being deposited.

Conclusions

In this paper, the versatility of *in situ* spectroscopic ellipsometry to study atomic layer deposition processes has been exemplified. It has been shown that:

- Monitoring the thickness as a function of number of ALD cycles enables to calculation of the growth rate during the ALD process;
- Insight into the nucleation behavior of the ALD films can be obtained by acquiring cycle-by-cycle data during initial film growth;
- Optical film properties, such as refractive index, extinction coefficient, and optical band gap, can be obtained from the energy dispersion of the optical constants;
- Electrical properties of conductive films can be calculated from the Drude absorption by conduction electrons in the film;
- For certain materials, insight into film composition can be derived from the "shape" of the optical dispersion in the dielectric function;

The value of SE in monitoring the film growth has recently been recognized by researchers and ALD tool manufacturers and has led to the development of commercial ALD reactors with integrated *in situ* spectroscopic ellipsometry capability (cf. Figure 2). It is, therefore, anticipated that *in situ* SE has a bright application prospect in the field of ALD.

References

1. International Technology Roadmap for Semiconductors (http://public.itrs.net/).

