The residues modulo \(m \) of products of random integers

Baryshnikov, Yu.; Stadje, W.

Published: 01/01/1999

Citation for published version (APA):
Report 99-046

The Residues modulo m
of Products of Random Integers
Yuli Baryshnikov, Wolfgang Stadje
ISSN 1389-2355
The Residues modulo \(m \) of Products of Random Integers

Yuliy Baryshnikov and Wolfgang Stadje
University of Osnabrück

Abstract

For two (possibly stochastically dependent) random variables \(X \) and \(Y \) taking values in \(\{0, \ldots, m - 1\} \) we study the distribution of the random residue \(U = XY \mod m \). In the case of independent and uniformly distributed \(X \) and \(Y \) we provide an exact solution in terms of generating functions that are computed via \(p \)-adic analysis. We show also that in the uniform case it is stochastically smaller than (and very close to) the uniform distribution. For general dependent \(X \) and \(Y \) we prove an inequality for the distance \(\sup_{x \in [0,1]} |F_U(x) - x| \).

1 Introduction

Let \(X \) and \(Y \) be two (possibly dependent) random variables taking values in \(\{0,1,\ldots,m-1\} \), where \(m \geq 2 \) is some fixed integer. In this note we study the distribution of the random residue of the product

\[U = XY \mod m. \]

We consider first the case when \(X \) and \(Y \) are independent and uniformly distributed, i.e., \(P(X = i, Y = j) = m^{-2} \) for \(i, j \in \{0,\ldots,m-1\} \). In Section 2 it is shown that the problem for general \(m \) can be reduced to that for \(m = p^n \), where \(p \) is some prime number and \(n \in \mathbb{N} \), and that in this case it is sufficient to determine the cardinalities

\[N_p(l,n) = \#\{(x,y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xy = p^{n-l}\}. \]
We prove that for every prime number \(p \) the generating function \(H_p(T, Z) = \sum_{n,l} N_p(l, n)T^nZ^l \) of the double sequence \(N_p(l, n) \) is given by

\[
H_p(T, Z) = \frac{(1 - pT)^2(1 - p^{-1}Z) - p^2(1 - p^{-1}T)T(1 - Z)}{(1 - Z)(1 - p^{-1}Z)(1 - pT)^2(1 - p^2T)}.
\] (1.1)

In the case \(p = 2 \) we derive a neat explicit formula for the distribution function of \(U \). It is given by

\[
P(U \leq k) = (k + 1)2^{-n} + 2^{-n+1}\sum_{i=0}^{n-1}(1 - \delta_i)
\] (1.2)

for \(k = 0, \ldots, 2^{n-1} \), where \(\delta_0, \ldots, \delta_{n-1} \in \{0, 1\} \) are the binary digits of \(k \), defined by \(k = \delta_0 + 2\delta_1 + 4\delta_2 + \cdots + 2^{n-1}\delta_{n-1} \).

It follows from (1.2) that the random 'fractional residue' \(2^{-n}U \) is stochastically smaller than a uniform random variable on \([0, 1)\), i.e. \(P(U/2^n < u) \geq u \) for all \(u \in [0, 1] \) and that the maximal deviation is given by

\[
\sup_{0 < u \leq 1} (P(2^{-n}U < u) - u) = (n + 2)2^{-(n+1)},
\] (1.3)

so that the distribution of \(2^{-n}U \) tends to the uniform distribution on \([0, 1]\) at an exponential rate (given by (1.3)), as \(n \to \infty \). In fact, these stochastic dominance and convergence remain valid for arbitrary \(m \).

The rest of the paper is devoted to an extension of this asymptotic equidistribution result to general \(m \) and dependent, non-uniform random variables \(X \) and \(Y \).

We will show that

\[
\sup_{0 \leq u \leq 1} |P(U/m < u) - u| \leq C\left(\frac{\log m}{m}\right)^{1/2}
\] (1.4)

if the distribution of \(Y \) and the conditional distribution of \(X \) given \(Y \) do not deviate too much from uniformity and if the latter distribution satisfies a certain Lipschitz condition. Specifically, we assume that

\[
P(Y = k) \leq C_0/m,
\]

\[
p(j|k) = P(X = j \mid Y = k) \leq C_1/m
\]

\[
\left|\frac{p(j_1|k)}{p(j_2|k)} - 1\right| \leq C_2|j_1 - j_2|/m
\]

2
for some constants C_0, C_1, C_2. Then (1.4) holds for a certain constant C which depends only on C_0, C_1 and C_2. From (1.4) we can conclude that U/m is for a large class of joint distributions of X and Y 'almost' uniformly distributed on $[0,1]$ in the sense of weak convergence.

Deterministic sequences of integers whose residues are uniformly distributed are treated in Narkiewicz [10] and Kuipers and Niederreiter [8]. They play an important role in random number generation (Ripley [12]). In the realm of stochastic sequences already Dvoretzky and Wolfowitz [5] studied weak convergence of residues for sums of independent, \mathbb{Z}_+-valued random variables; more recent papers on related questions are Brown [3], Barbour and Grubel [1], and Grubel [6]. The distribution of the fractional part of continuous random variables, in particular its closeness or convergence to the uniform distribution on $[0,1)$, has been studied by many authors (e.g. Schatte [13], Stadje [14, 15], Qi and Wilms [11]).

2 The uniform case

We start by deriving the exact probability distribution of U in the case $m = 2^n$, $n \in \mathbb{N}$. For $x \in \mathbb{R}_+$ let $\text{frac}(x)$ be the fractional part of x.

Proposition 1 We have

$$P(U \leq k) = (k + 1)2^{-n} + 2^{-(n+1)} \sum_{i=0}^{n-1} (1 - \delta_i),$$

for every $k \in \{0, 1, \ldots, 2^n - 1\}$, where $\delta_0, \ldots, \delta_{n-1} \in \{0, \ldots, n-1\}$ are the binary digits of k, i.e. $k = \delta_0 + 2\delta_1 + 4\delta_2 + \cdots + 2^{n-1}\delta_{n-1}$.

Proof. Obviously,

$$P(U = k) = \sum_{i=0}^{2^n-1} 2^{-2n} \text{card}\{j \in I_n \mid \text{frac}(ij2^{-n}) = k2^{-n}\}. \quad (2.2)$$

Let

$$A_m = \begin{cases} \{i \in I_n \mid i2^{-m} \text{ is odd}\}, & \text{if } m < n \\ \{0\}, & \text{if } m = n. \end{cases}$$

It is easily seen that

$$\text{card } A_m = \begin{cases} 2^{n-m-1}, & \text{if } m \in \{0, \ldots, n-1\} \\ 1, & \text{if } m = n. \end{cases}$$
Consider $i \in A_m$ and $k \in A_l$ for some $m, l \in \{0, \ldots, n-1\}$, say $i = (2p+1)2^m$ and $k = (2q+1)2^l$. Then for any $j \in I_n$,

$$\frac{(ij)2^{-n}}{k2^{-n}} = \frac{k2^{-n}}{k2^{-n}} \tag{2.3}$$

is equivalent to

$$(2p+1)j - (2q+1)2^{l-m} = N2^{n-m} \text{ for some integer } N. \tag{2.4}$$

For $l < m$ the lefthand side of (2.4) is not integer, so there is no solution j of (2.3). Now let $l \geq m$. Since $2p+1$ and 2^n are relatively prime, a simple result on residues implies that the numbers $(2p+1)j - (2q+1)2^{l-m}$ run through a complete set of residues mod 2^n if j runs through (the complete set of residues) $0, 1, \ldots, 2^n - 1$. But $N2^{n-m}$ gives different residues mod 2^n for $N = 0, \ldots, 2^m - 1$, while for larger values of N one only gets replications of these residues. Thus, the number of solutions j of (2.3) is 2^n if $l \geq m$. The same result also holds for $m \in A_s$, i.e. $m = 0$.

From (2.2) it now follows that if $k \in A_l$ for some $l < n$ we obtain

$$P(U = k2^{-n}) = \sum_{m=0}^{n-1} 2^{-2n} \sum_{i \in A_m} \text{card}\{j \in I_n \mid \text{int}(ij2^{-n}) = k2^{-n}\} + 2^{-n}\delta_{0k}$$

$$= \sum_{m=0}^{l} 2^{-2n} \text{card}(A_m)2^n$$

$$= \sum_{m=0}^{l} 2^{-n}2^{n-m-1}$$

$$= (l + 1)2^{-(n+1)}, \tag{2.5}$$

while if $k \in A_n$,

$$P(U = 0) = \sum_{m=0}^{n-1} 2^{-2n} \text{card}(A_m)2^n + 2^{-n}$$

$$= (n + 2)2^{-(n+1)}. \tag{2.6}$$

In particular, $k \mapsto P(U = k)$ is constant on A_l for every l. Therefore, the probability $P(U \in (2^m\alpha, 2^m\alpha + 2^{m-1}])$ is the same for every $\alpha \in \{0, \ldots, 2^{n-m}-1\}$. \[4\]
It follows that
\[
P(U \leq k) = P(U = 0) + P(0 < U < n^{-1}2^n) + \sum_{l=1}^{n-1} P\left(\sum_{i=0}^{l-1} \delta_i2^i < U \leq \sum_{i=l}^{n-1} \delta_i2^i\right)
\] (2.7)
\[
= P(U = 0) + \sum_{l=0}^{n-1} P(0 < U \leq \delta_l2^l).
\]

To compute the righthand side of (2.7), note that the number of integers \(i \in A_m\) satisfying \(0 < i \leq 2^l\) is equal to \(2^{l-m-1}\) for \(m = 0, \ldots, l-1\) and equal to 1 for \(m = l\). Hence, by (2.5),
\[
P(0 < U \leq 2^l) = \sum_{m=0}^{l} P(U \in A_m \cap \{0, \ldots, 2^l\})
\]
\[
= \sum_{m=0}^{l-1} (l+1)2^{-(n+1)}2^{l-m-1} + (l+1)2^{-(n+1)}
\]
\[
= 2^{-(n+1)}(2^{l+1} - 1).
\] (2.8)

Inserting (2.8) and (2.6) in (2.7) now yields (2.1).

Proposition 2
1) For arbitrary \(m\) \(U\) is stochastically smaller than a uniform random variable on \([0, 1]\);
2) For arbitrary \(m\)
\[
\sup_{0 < u \leq 1} (P(U < u) - u) = O(m^{-1+\epsilon}),
\] (2.9)
for any \(\epsilon > 0\);
and
3) For \(m = 2^n\),
\[
\sup_{0 < u \leq 1} (P(U < u) - u) = (n + 2)2^{-(n+1)}.
\] (2.10)

Proof. We start with 1). It is clear that
\[
\#\{0 \leq j < m : ij \mod m \leq k\} = \gcd(i, m) \left(\left\lfloor \frac{k}{\gcd(i, m)} \right\rfloor + 1\right).
\] (2.11)
This implies
\[
P(U \leq k) = \frac{1}{m^2} \sum_{i=0}^{m-1} \gcd(i, m) \left\lfloor \frac{k}{\gcd(i, m)} \right\rfloor + 1 > k/m \tag{2.12}
\]
for all \(0 \leq k < m\), and hence proves 1).

Further, estimating (2.12) in an obvious way from above, we obtain
\[
P(U \leq k) \leq \frac{1}{m^2} \sum_{i=0}^{m-1} \gcd(i, m) \left(\frac{k}{\gcd(i, m)} + 1 \right)
\leq \frac{k}{m} + \frac{1}{m^2} \sum_{i=0}^{m-1} \gcd(i, m)
= \frac{k}{m} + \frac{1}{m^2} \sum_{i|m} \# \{0 \leq i < m : \gcd(i, m) = t\}
\leq \frac{k}{m} + \frac{1}{m} \sum_{i|m} \frac{d(m)}{m}
= \frac{k}{m} + d(m)/m,
\tag{2.13}
\]
where \(d(m)\) denotes the number of divisors of \(m\). It is known that \(d(m) = O(m^\epsilon)\) for all \(\epsilon > 0\), which implies 2).

To prove 3) define for \(0 < u \leq 1\) the integer \(k(u)\) by \(k(u)2^{-n} < u \leq (k(u) + 1)2^{-n}\) and let \(\delta_0, \ldots, \delta_{n-1}\) be its binary digits. By (2.1) we can write
\[
P(U < u) - u = (k(u)2^{-n} + 2^{-n} - u) + 2^{-(n+1)} \sum_{i=0}^{n-1} (1 - \delta_i), \tag{2.14}
\]
which is nonnegative by the definition of \(k(u)\). Further it is clear from (2.14) that \(\sup_{0 < u \leq 1} (P(U < u) - u)\) is approached as \(u \downarrow 0\), yielding (2.10).

Now we derive the exact formulae for \(P(U = k)\) in the case of general \(m \in \mathbb{N}\).

Let \(X\) and \(Y\) be independent and uniform on the set \(\{0, \ldots, m - 1\}\), which we identify with \(\mathbb{Z}/m\mathbb{Z}\). Then \(P(U = a)\) is equal to \(m^{-2}\) times the number of solutions \((x, y) \in (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})\) of the equation
\[
x y \equiv a \mod m.
\]

Let \(m = \prod p_i^{n_i}\) be the prime factorization of \(m\) (\(p_i\) primes, \(n_i \in \mathbb{N}\)). For \(a \in \mathbb{Z}/m\mathbb{Z}\) we define \(a(i) \in \mathbb{Z}/p_i^{n_i}\mathbb{Z}\) as the (unique) solution of
\[
a(i) \equiv a \mod p_i^{n_i}.
\]

Then as \(\mathbb{Z}/m\mathbb{Z} = \prod (\mathbb{Z}/p_i^{n_i}\mathbb{Z})\) (the Chinese remainder theorem), we have the following decomposition.
Lemma 1 The number of pairs \((x, y) \in (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})\) satisfying
\[
xy \equiv a \mod m
\] (2.15)
is equal to the product of the numbers of solutions \((x, y) \in (\mathbb{Z}/p_i^n\mathbb{Z}) \times (\mathbb{Z}/p_i^n\mathbb{Z})\) of
\[
xy \equiv a(i) \mod p_i^n.
\] (2.16)

By the Lemma, we only have to determine the number of solutions of (2.15) for \(m\) of the form \(m = p^n\).

Fix a prime number \(p\) and a natural number \(n\). Observe first that the number of solutions \((x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z})\) of \(xy \equiv a \mod p^n\) depends on \(a\) only through the \(p\)-adic norm of \(a\), that is, through the exponent of the maximal power of \(p\) that divides \(a\). Indeed, if there exists an invertible \(b\) in \(\mathbb{Z}/p^n\mathbb{Z}\) satisfying
\[
\# \{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z}) \times (\mathbb{Z}/p^n\mathbb{Z}) \mid xy \equiv a \mod p^n\}
= \# \{(x, y) \mid xyb \equiv p^{n-l} \mod p^n\}
= \# \{(x, z) \in (\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z}) \mid xz \equiv p^{n-l} \mod p^n\}
= N_p(l, n).
\]

To compute \(N_p(l, n)\), we use the following well-known formula from the theory of \(p\)-adic integration (Christol [4, Sect. 7.2.2, p. 466]). Let \(f(x_1, \ldots, x_r)\) be a polynomial with coefficients in \(\mathbb{Z}_p\), the ring of \(p\)-adic integers, and let \(| \cdot |_p\) denote the \(p\)-adic norm. Then for any real \(s > 0\),
\[
\int \left(\mathbb{Z}_p\right)^r |f(x_1, \ldots, x_r)|_p^s \mu(dx_1) \cdots \mu(dx_r) = p^s - (p^s - 1)Q(p^{r-s}), \quad (2.17)
\]
where \(\mu\) is the Haar measure on \(\mathbb{Z}_p\) and \(Q(T)\) is a Poincaré series:
\[
Q(T) = \sum_{k=0}^{\infty} T^k \# \{(x_1, \ldots, x_r) \in (\mathbb{Z}/p^k\mathbb{Z})^r \mid f(x_1, \ldots, x_r) \equiv 0 \mod p^k\}.
\]

Theorem 1 The generating functions
\[
G_{p,l}(T) = \sum_{n=0}^{\infty} N_p(l, n) T^n, \quad H_{p}(T, Z) = \sum_{n=0}^{\infty} \sum_{l=0}^{n} N_p(l, n) T^n Z^l
\]
are given by

\[
G_{p,i}(T) = \frac{p^l(1-pT)^2 - p^2(1-p^{-1})^2T}{p^l(1-pT)^2(1-p^2T)}
\] (2.18)

\[
H_p(T, Z) = \frac{(1-pT)^2(1-p^{-1}Z) - p^2(1-p^{-1}T)(1-Z)T}{(1-Z)(1-p^{-1}Z)(1-p^2T)(1-p^2T)}
\] (2.19)

Proof. We use formula (2.17) for \(r = 2 \) and \(f(x, y) = f_l(x, y) = p^lxy \). For the lefthand side of (2.17) we obtain

\[
\int \left| f_l(x, y) \right|_p^s \mu(dx) \mu(dy) = \int \left| x \right|_p^s \left| y \right|_p^s \mu(dx) \mu(dy)
\]

\[
= p^{-1} \left(\int \left| x \right|_p^s \mu(dx) \right)^2.
\]

By (2.17),

\[
\int \left| x \right|_p^s \mu(dx) = p^s - (p^s - 1) \frac{1}{1-p^{-1-s}} = \frac{1-p^{-1}}{1-p^{-1-s}}.
\]

(Note that here \(Q(T) = 1/(1-T) \), since \(\#\{x \in \mathbb{Z}p^n/Z \mid x \equiv 0 \mod p^n\} = 1 \) for all \(n \)). Furthermore,

\[
xy \equiv p^{-l} \mod p^n \iff \ p^lxy \equiv 0 \mod p^n.
\]

Thus, the coefficients on the righthand side of (2.17) are just the \(N_p(l, n) \). It follows that

\[
p^s - (p^s - 1) \sum_n N_p(l, n)(p^{-2-s})^n = p^{-1} \left(\frac{1-p^{-1}}{1-p^{-1-s}} \right)^2.
\]

Setting \(T = p^{-2-s} \), so that \(p^{-s} = p^2T \) we get

\[
\frac{1}{p^2T} - \left(\frac{1}{p^2T} - 1 \right) G_{p,i}(T) = p^{-1} \left(\frac{1-p^{-1}}{1-pT} \right)^2
\] (2.20)

and (2.18) follows from (2.20) by a short calculation. Similarly, multiplying (2.20) by \(Z^l \) and summing over \(l \) yields (2.19).
For example, if \(p = 2 \) the numbers \(N_p(0, n) \) of solutions \((x, y) \) of \((x, y) \equiv 0 \mod 2^n \) is \((n + 2)2^{n-1}\), as

\[
G_{2,0}(T) = \sum_{n=0}^{\infty} N_p(0, n)T^n = \frac{(1 - 2T)^2 - T}{(1 - 2T)^2(1 - 4T)} = \frac{1 - T}{(1 - 2T)^2} = \sum_{n=0}^{\infty} (n + 2)2^{n-1}T^n.
\]

3 The inequality for dependent random variables

We will now prove (1.4). For this we need some basic theory of continued fractions (see e.g. Hardy and Wright [7], Billingsley [2]) and a probability estimate due to Lévy [9]).

Any \(x \in [0, 1] \) has a continued fraction expansion \(x = [a_1(x), a_2(x), \ldots] \) providing a sequence of fractions usually denoted by

\[
p_n(x)/q_n(x) = [a_1(x), \ldots, a_n(x)].
\]

For two positive numbers \(\rho_0 < \rho_1 \) let

\[
B(\rho_0, \rho_1) = \{x \in [0, 1] \mid \rho_0 < q_k(x) < \rho_1 \text{ for some } k \in \mathbb{N}\}.
\]

Lemma 2 \(\lambda(B(\rho_0, \rho_1)) \geq 1 - \frac{2\rho_0}{\rho_1 - \rho_0}(1 + 2 \log_2 \rho_0) - \rho_1^{-1} \).

Proof. Let \(Q \) be the set of all finite sequences \(\vec{q} = (q_1, \ldots, q_k), \ k \in \mathbb{N}, \) of denominators of possible continued fraction expansions satisfying \(q_k \leq \rho_0 \). We set \(x(\vec{q}) = p_k/q_k \), where \(p_k \) is the \(k \)th numerator corresponding to \(q_1, \ldots, q_k \), and

\[
I(\vec{q}) = \{x \in [0, 1] \mid (q_1(x), \ldots, q_k(x)) = \vec{q}\}
\]

\[
J(\vec{q}) = I(\vec{q}) \cap \{x \in [0, 1] \mid q_{k+1}(x) \geq \rho_1 \text{ or } x = x(\vec{q})\}
\]

\[
J(0) = \{x \in [0, 1] \mid q_1(x) \geq \rho_1\}.
\]

The sets \(J(\vec{q}), \vec{q} \in Q, \) and \(J(0) \) are pairwise disjoint intervals and

\[
B(\rho_0, \rho_1) = [0, 1]\setminus \left(J(0) \cup \bigcup_{\vec{q} \in Q} J(\vec{q}) \right).
\]
Thus,
\[
\lambda([0, 1] \setminus B(\rho_0, \rho_1)) = \lambda(J(0)) + \sum_{q \in Q} \lambda(J(q))
\]
\[
= \lambda(J(0)) + \sum_{k=1}^{k_0} \sum_{q \in Q, |q| = k} \lambda(J(q)),
\]
(3.1)

where $|q|$ denotes the length of the sequence q and k_0 is the maximum length of sequences in Q. Since
\[
\rho_0 > q_k \geq 2^{(k-1)/2}
\]
for every $(q_1, \ldots, q_k) \in Q$,

it follows that
\[
k_0 < 1 + 2 \log_2 \rho_0.
\]

(3.2)

Now let U be a random variable that is uniformly distributed on $[0, 1]$. Then if $q \in Q, |q| = k$, it follows that
\[
\lambda(J(q)) = P(q_{k+1}(U) \geq \rho_1, U \in I(q))
\]
\[
= P(U \in I(q))P(q_{k+1}(U) \geq \rho_1 | U \in I(q))
\]
\[
\leq P(U \in I(q))P(a_{k+1}(U) > \frac{\rho_1 - \rho_0}{\rho_0} | U \in I(q))
\]
\[
\leq P(U \in I(q))2 \left(\frac{\rho_1 - \rho_0}{\rho_0} \right)^{-1}.
\]

(3.3)

For the first inequality in (3.3) we have used the recursion $q_{k+1} = q_k a_{k+1} + q_{k-1}$ which for $q \in Q, |q| = k$, implies that $a_{k+1} > (\rho_1 - \rho_0)/\rho_0$. The second inequality follows from a result of Lévy [9, p. 296].

To estimate $\lambda(J(0))$, note that $q_1(x) \geq \rho_0$ implies that $x \leq p_1(x)/q_1(x) = 1/\rho_1$. Thus, by (3.1), (3.2) and (3.3).
\[
\lambda([0, 1] \setminus B(\rho_0, \rho_1)) \leq \rho_1^{-1} + k_0 \frac{2\rho_0}{\rho_1 - \rho_0} \sum_{q \in Q} P(U \in I(q))
\]
\[
\leq \rho_1^{-1} + (1 + 2 \log_2 \rho_0) \frac{2\rho_0}{\rho_1 - \rho_0}.
\]

The Lemma is proved.
Lemma 3 Let X be uniformly distributed on $\{0, 1, \ldots, m - 1\}$. Then
\[
P(X/m \notin B(\rho_0, \rho_1)) \leq 2\rho_0 (1 + 2 \log \rho_0) \left(\frac{1}{\rho_1 - \rho_0} + \frac{\rho_0}{m} \right) + \rho_1^{-1} + m^{-1}.
\] (3.4)

Proof. For every half-open or open interval I in $[0, 1]$ we have
\[
|P(X/m \in I) - \lambda(I)| \leq m^{-1}.
\] (3.5)
As $J(0)$ and $J(\tilde{q})$ are half-open intervals, (3.1) and (3.4) yield
\[
P(X/m \notin B(\rho_0, \rho_1)) \leq \lambda(J(0)) + \sum_{\tilde{q} \in \tilde{Q}} \lambda(J(\tilde{q}))
+ m^{-1}(1 + \text{card } Q).
\] (3.6)

It remains to find an upper bound for $\text{card } Q$. Let \tilde{Q} be the set of sequences in Q having maximal length, i.e., the set of those $(q_1(x), \ldots, q_k(x)) \in Q$ for which $q_{k+1}(x) \geq \rho_0$. Since
\[
\lambda(I(q_1, \ldots, q_k)) = \frac{1}{q_k(q_k + q_{k-1})} > \frac{1}{2q_k^2} \geq \frac{1}{2\rho_0^2}
\]
for $(q_1, \ldots, q_k) \in \tilde{Q}$, we clearly have $\text{card } \tilde{Q} < 2\rho_0^2$. Inequality (3.4) now follows from (3.6), Lemma 2 and
\[
\text{card } Q \leq k_0 \text{card } \tilde{Q} < (1 + \log \rho_0)(2\rho_0^2).
\]

Lemma 4 Let
\[
p(j, k) = P(X = j, \ Y = k), \ j, k \in \{0, \ldots, m - 1\}
\]
be the joint distribution of X and Y. Assume that there are constants C_1 and C_2 such that
\[
p(j|k) = P(X = j|Y = k) \leq C_1/m
\] (3.7)
\[
\left| \frac{p(j_1|k)}{p(j_2|k)} - 1 \right| \leq C_2|j_1 - j_2|/m
\] (3.8)
for all $j, k, j_1, j_2 \in \{0, \ldots, m - 1\}$. Then
\[
|P(U/m < u|Y = k) - u| \leq \frac{3C_2}{m} + \inf_{n \geq 1} f \left(q_n \left(\frac{k}{m} \right) \right)
\]
for all $k \in \{0, \ldots, m-1\}$, where

$$f(q) = \frac{3}{q} + \frac{(C_1 + C_2)q}{m}, \quad q \in \mathbb{N}.$$

Proof. Let p/q be an arbitrary fraction from the continued fraction expansion of k/m. Let

$$J_i = \{(i-1)q, (i-1)q + 1, \ldots, iq - 1\}$$

$$J_i(u) = \{j \in J_i \mid \text{frac}(jk/m) < u\},$$

where $\text{frac}(x)$ denotes the fractional part of $x \geq 0$. Then

$$P(U/m < u \mid Y = k) = \sum_{i=1}^{[m/q]} \sum_{j \in J_i(u)} P(X = j \mid Y = k) + \sum_{k \in J_i([m/q]+1)} P(X = j \mid Y = k) \quad (3.9)$$

$$= I + II.$$

Clearly, (3.7) yields

$$II \leq C_1q/m. \quad (3.10)$$

Regarding the sum I, we can write

$$I = \sum_{i=1}^{[m/q]} \sum_{j \in J_i(u)} p(j \mid k) \quad (3.11)$$

$$\leq \sum_{i=1}^{[m/q]} \frac{A_i \text{card } J_i(u)}{a_i \text{card } J_i} \sum_{j \in J_i} p(j \mid k),$$

where $A_i = \max_{j \in J_i} p(j \mid k)$ and $a_i = \min_{j \in J_i} p(j \mid k)$. From (3.8) we can conclude that

$$A_i/a_i \leq 1 + (C_2q/m). \quad (3.12)$$

Obviously, $\text{card } J_i = q$. We need an upper bound for $\text{card } J_i(u)$. Note that

$$\left| \frac{k}{m} - \frac{p}{q} \right| < q^{-2}.$$
For arbitrary \(j \in J_i(u) \) write \(j = (i - 1)q + h \), where \(h \in J_1 \); we obtain

\[
\frac{jk}{m} = \frac{\left((i - 1)q \frac{k}{m} + \frac{hk}{m}\right)}{m} = \frac{\left((i - 1)q \frac{k}{m} + \frac{hk}{m}\right)}{m}
\]

and

\[
\frac{hk}{m} = \frac{h\left(\frac{k}{m} - \frac{p}{q}\right) + \frac{hp}{q}}{m} = \frac{\left(\alpha + \frac{hp}{q}\right)}{m}
\]

where \(|\alpha| < q^{-1}\). Recall that \(p \) and \(q \) are relatively prime. Thus, as \(h \) runs through \(J_1 \), \(\frac{hk}{m} \) runs through the set of all values \(\frac{l}{q} + \alpha \), \(l \in J_1 \). Let \(\beta_i = (i - 1)qk/m \).

Let \(\tilde{j}_i(u) \) be the number of values \(\frac{\beta_i + (l/q)}{m} \) in \([0, u)\) for which \(l \in J_1 \). Clearly, we have \(\tilde{j}_i(u) \in \{[qu], [qu] + 1\} \). Since \(|\alpha| < q^{-1}\), it now follows easily that

\[
|\tilde{j}_i(u) - \text{card } J_i(u)| \leq 2,
\]

so that

\[
|qu - \text{card } J_i(u)| \leq 3. \quad (3.13)
\]

By (3.12) and (3.13),

\[
\frac{A_i \text{ card } J_i(u)}{a_i \text{ card } J_i} \leq \left(1 + \frac{C_1q}{m}\right) \frac{qu + 3}{q} \leq u + \frac{C_1q}{m} + \frac{3}{q} + \frac{3C_2}{m}. \quad (3.14)
\]

Inserting (3.14) and (3.10) in (3.9) we find that

\[
P(U/m < u) \leq u + \frac{C_2q}{m} + \frac{3}{q} + \frac{3C_2}{m} + \frac{C_1q}{m}
= u + \frac{3C_2}{m} + f(q).
\]

Minimizing with respect to all possible denominators \(q = q_n(k/m) \) we arrive at

\[
P(U/m < u) - u \leq \frac{3C_2}{m} + \inf_{n \geq 1} f \left(\frac{q_n(k/m)}{m}\right).
\]

The analogous lower bound \(P(U/m < u) \geq u - (3C_2/m) - f(q) \) is derived along the same lines.
Theorem 2 Assume that the joint distribution of X and Y satisfies conditions (3.7) and (3.8) and that

$$P(Y = k) \leq C_0/m, \ k = 0, \ldots, m - 1.$$ \hspace{1cm} (3.15)

for some constant C_0. Then there is a constant C depending only on C_0, C_1, C_2 such that

$$\sup_{0 \leq u \leq 1} |P(U/m < u) - u| \leq C \left(\frac{\log m}{m} \right)^{1/2}. \hspace{1cm} (3.16)$$

Proof. By the formula of total probability and Lemma 4, we obtain

$$P(U/m < u) = \sum_{k=0}^{m-1} P(Y = k)P(U/m < u|Y = k)$$

$$\leq u + 3C_2m^{-1} + \sum_{k=0}^{m-1} P(Y = k) \min \left[1, \min_{n \geq 1} f \left(q_n \left(\frac{k}{m} \right) \right) \right]$$

$$= u + 3C_2m^{-1} + \min \left[1, \min_{n \geq 1} f \left(q_n \left(\frac{Y}{m} \right) \right) \right]. \hspace{1cm} (3.17)$$

Note that the right side of (3.17) is equal to \(\int_0^1 (1 - G(x))dx \), where

$$G(x) = P \left(\min_{n \geq 1} f \left(q_n \left(\frac{Y}{m} \right) \right) < x \right).$$

Let $C_3 = C_1 + C_2$. The function $f(t) = 3t^{-1} + C_3m^{-1}t$, $t > 0$, is strictly convex, has the unique minimum $t_0 = (3m/C_3)^{1/2}$ and $x_0 = f(t_0) = 2t_0^{-1}$. Thus the equation $f(t) = x$ has no solution for $x < x_0$ and exactly two solutions $t_1(x) < t_2(x)$ for $x > x_0$. If $x > x_0$, a short calculation yields

$$f(6/x) = f(mx/2C_3) = \frac{x}{2} + \frac{6C_3}{mx} < x,$$

and consequently $t_1(x) < 6/x < mx/2C_3 < t_2(x)$. These observations show that

$$G(x) = P \left(t_1(x) < q_n(Y/m) < t_2(x) \mbox{ for some } n \in \mathbb{N} \right)$$

$$\geq P(6/x < q_n(Y/m) < mx/2C_3 \mbox{ for some } n \in \mathbb{N})$$

$$= P(Y/m \in B(6/x, \ mx/2C_3)). \hspace{1cm} (3.18)$$

From (3.15) and Lemma 3 it now follows that

$$1 - G(x) \leq H(x) + m^{-1}, \ x \in (0,1]$$

14
where the function H is defined by
\[
H(x) = \frac{2C_3}{mx} + 2C_0 \left(\frac{(6/x)^2 m^{-1} + \frac{12C_3}{mx^2 - 12C_3}}{1 + 2\log_2(6/x)} \right), \quad x > x_0.
\]
Thus, for any $y \in (x_0, 1]$ we have the following estimate:
\[
E(\min[1, f(qn(Y/m))]) = \int_0^1 (1 - G(x)) \, dx \leq y + \int_y^1 H(x) \, dx. \quad (3.19)
\]
On (x_0, ∞) the function $H(x)$ is positive and strictly decreasing from infinity at zero. Further,
\[
H(x) \geq 2 \left(\frac{36}{mx^2} + \frac{12C_3}{mx^2} \right) \left(1 + 2\log_2(6/x) \right) \geq 12 \cdot \frac{48}{mx^2}, \quad x \in (x_0, 1] \quad (3.20)
\]
as $C_0 \geq 1$ and $C_3 \geq 1$. Let x_1 be the solution of $H(x) = 1$ in (x_0, ∞). For sufficiently large m we have $x_1 < 1$ and then, by (3.20),
\[
x_1 \geq \max[12(C_3/m)^{1/2}, \ (576/m)^{1/2}].
\]
Hence if $x_1 \leq x \leq 1$, $H(x)$ can be bounded as follows:
\[
H(x) \leq \frac{2C_3}{mx} + 2C_0 \left(\frac{36}{mx^2} + \frac{12C_3}{mx^2(1 - (12C_3/mx_1^2))} \right) \left(1 + \log_2(36/x_1^2) \right)
\leq \frac{2C_3}{mx} + \frac{2C_0}{mx} \left(36 + \frac{144}{11}C_3 \right) \left(1 + \log_2(36m/576) \right)
\leq \frac{2C_3}{mx} + \frac{2C_0}{mx} (36 + 14C_3)(\log_2 m - 3).
\]
For any $y \in [x_1, 1]$ we now find that
\[
y + \int_y^1 H(x) \, dx \leq y + \frac{2C_3}{my} + \frac{2C_0(36 + 14C_3)(\log_2 m - 3)}{my}. \quad (3.21)
\]
Over $y \in (0, \infty)$ the right-hand side of (3.21) is minimized for
\[
y_0 = \left[2C_3 + 2C_0(36 + 14C_3)(\log_2 m - 3) \right]^{1/2} m^{-1/2},
\]
the corresponding minimum being equal to $2y_0$. A short calculation shows that $H(y_0) \to (9 + 3C_3)/(9 + 4C_3) < 1$, as $m \to \infty$. Thus, $y_0 > x_1$ for sufficiently large m. Hence we may insert the value y_0 in (3.21) for all but finitely many m. To summarize, it is now proved that
\[
P(U/m < u) \leq u + C \sqrt{\frac{\log m}{m}}.
\]
for some constant C depending only on $C_0, C_1,$ and C_2. Similarly it can be shown that $P(U/m < u) \geq u - C((\log m)/m)^{1/2}$.

References