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Abstract

The convergence of application domains in new systems-
on-chip (SoC) results in systems with many applications
with a mix of soft and hard real-time requirements. To re-
duce cost, resources, such as memories and interconnect,
are shared between applications. However, resource shar-
ing introduces interference between the sharing applica-
tions, making it difficult to satisfy their real-time require-
ments. Existing arbiters do not efficiently satisfy the re-
quirements of applications in SoCs, as they either couple
rate or allocation granularity to latency, or cannot run at
high speeds in hardware with a low-cost implementation.

The contribution of this paper is an arbiter called Credit-
Controlled Static-Priority (CCSP), consisting of a rate reg-
ulator and a static-priority scheduler. The rate regulator
isolates applications by regulating the amount of provided
service in a way that decouples allocation granularity and
latency. The static-priority scheduler decouples latency and
rate, such that low latency can be provided to any applica-
tion, regardless of the allocated rate. We show that CCSP
belongs to the class of latency-rate servers and guarantees
the allocated rate within a maximum latency, as required by
hard real-time applications. We present a hardware imple-
mentation of the arbiter in the context of a DDR2 SDRAM
controller. An instance with six ports running at 200 MHz
requires an area of 0.0223 mm2 in a 90 nm CMOS process.

1. Introduction

A contemporary multi-processor system-on-chip (SoC)
consists of a large number of intellectual property compo-
nents, such as streaming hardware accelerators and proces-
sors with caches, running many applications. Resources,
such as memories and interconnect, are shared between ap-
plications to reduce system cost. However, resource sharing
introduces interference between applications, making it dif-

ficult to satisfy their real-time requirements. We refer to
users of the resources as requestors, corresponding to pro-
cesses in the context of CPUs, or communication channels
in case of a memory or an interconnect, that act on behalf
of an application. Resource access is provided by arbiters
that require a small hardware implementation and must run
at high clock speeds. A small implementation allows in-
stances of the arbiter to be used for many resources in the
system with a limited impact on area. High clock speed is
required to perform scheduling on a fine level of granularity,
reducing latency and buffers.

We consider resource scheduling in hybrid systems [1]
that contain applications with both soft and hard real-time
requirements. Hard real-time applications, such as audio
post-processing, typically have predictable and regular re-
quest patterns. Their deadlines are not very tight, but must
always be met in order to guarantee the functional cor-
rectness of the SoC [1, 13, 27]. To satisfy these require-
ments, hard real-time requestors require a guaranteed min-
imum service rate and a bounded maximum latency that
can be analytically verified at design time. In contrast, a
soft real-time application, such as software video decoding,
is typically very bursty and has tight task-level deadlines
on a much coarser grain than their hard real-time counter-
parts. These deadlines may span thousands of requests,
making the worst-case latency of a single request less in-
teresting [27]. Missing a soft deadline reduces the quality
of the application output, such as causing a frame skip in
video playback, which may be acceptable as long as it does
not occur too frequently [1]. Soft real-time requestors re-
quire a guaranteed minimum service rate and a low average
latency to minimize deadline misses.

Existing arbiters fail to cater to the above-mentioned re-
quirements for at least one of the following three reasons:
1) allocation granularity is coupled to latency, resulting in
long latencies or over-allocation due to discretization, 2) la-
tency is coupled to rate, preventing low latency from being
provided to requestors with low rate requirements without
over-allocation, or 3) they cannot run at high clock speed
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with a small implementation.
The contribution of this paper is a novel arbiter called

Credit-Controlled Static-Priority (CCSP), consisting of a
rate regulator and a static-priority scheduler. The rate reg-
ulator isolates requestors by regulating the amount of pro-
vided service in a way that decouples allocation granularity
and latency. The static-priority scheduler decouples latency
and rate, such that low latency can be provided to any re-
questor, regardless of the allocated rate.

This paper is organized as follows. In Section 2, we re-
view related work and discuss why existing arbiters do not
satisfy our requirements. We introduce a formal model in
Section 3 before defining the CCSP arbiter and explaining
the operation of the rate regulator and static-priority sched-
uler in Section 4. In Section 5, we show that CCSP belongs
to the class of latency-rate (LR) servers and provides a min-
imum amount of service within a maximum latency, as re-
quired by hard real-time requestors. An efficient hardware
implementation is presented in Section 6 in the context of
a DDR2 SDRAM controller. We study experimental results
for a system running an H.264 decoder in Section 7, before
finishing with conclusions in Section 8.

2. Related work

Much work has been carried out in the real-time commu-
nity concerning server-based scheduling of aperiodic and
sporadic requestors [7]. Previously, it was assumed that
there was only a single server scheduling all aperiodic and
sporadic requests, sharing the resource with periodic re-
questors. In more recent publications [10, 21], the servers
are used as first-level schedulers to partition the resource,
while additional levels of schedulers address the require-
ments of the requestors sharing the server. The sporadic
server [26] was the first server to depart from the purely
periodic polling server, and trying to address the specific
needs of sporadic requestors. Its value is mostly theoretical,
since its practical applicability is limited due to its complex
accounting mechanism. The constant-bandwidth server [1]
is similar to our work in the sense that it provides isolation
and offers a linear guarantee on provided service. How-
ever, it has the drawback of being scheduled by an earliest-
deadline-first (EDF) scheduler, which is difficult to imple-
ment at high clock speed in hardware since it has to main-
tain a priority queue. For instance, the implementation of
an EDF scheduler in [22] uses a tree of multiple-bit com-
parators to compare deadlines in the priority queue, which
is too slow for many SoC resources, such as memories and
interconnect.

Many arbiters have been proposed in the context of com-
munication networks. Several of these are based on the
Round-Robin algorithm, because it is simple and starva-
tion free. Weighted Round-Robin [20] and Deficit Round-

Robin [25] are extensions that guarantee each requestor a
minimum service, proportional to an allocated rate, in a
frame of fixed size. This type of frame-based arbitration
suffers from an inherent coupling between allocation gran-
ularity and latency, where allocation granularity is inversely
proportional to the frame size [31]. Larger frame size results
in finer allocation granularity, reducing over-allocation, but
at the cost of increased latencies for all requestors. This
granularity issue is addressed in [12, 18, 19] with hierarchi-
cal framing strategies and in [24], where tracking debits and
credits accomplishes exact allocation over multiple frames.
The above-mentioned algorithms, as well as the family of
Fair Queuing algorithms [31], are unable to efficiently dis-
tinguish different latency requirements, as the rate is the
only parameter affecting scheduling. This results in an un-
wanted coupling between latency and rate, where latency is
inversely proportional to the allocated rate. Requestors with
low rate requirements hence suffer from long latencies un-
less their rates are increased, reducing resource utilization.

The regulators in [23, 32] control rate by delaying arriv-
ing requests until a conformance time when the arrival pro-
cess satisfies certain burstiness constraints. This requires a
potentially large number of time-stamps to be stored in the
arbiter, which is expensive for a resource arbiter in a SoC.
This problem is mitigated in [8, 11], where time stamps are
assigned only to the request at the head of each request
queue. However, the assignment of time stamps in [8] is
such that multiple requests with the same conformance time
might cause the conformance times of later requests to irre-
versibly shift ahead, causing less service than allocated to
be provided to the requestors. The regulator in [11] solves
this issue, but is integrated with a Fair Queuing scheduler
that couples latency and rate.

The arbiters in [5, 15–17] employ static-priority sched-
ulers, where high priority is assigned to soft real-time re-
questors to achieve low average latency. Using a static-
priority scheduler has the benefit of being cheap to imple-
ment in hardware. However, the arbiters in [15–17] have
significant shortcomings, as the rate regulators are frame
based and couple allocation granularity and latency. In [5],
service is allocated in discrete chunks, the size of which de-
pends on the priority of the requestor and the total number
of requestors sharing the resource. This couples allocation
granularity and latency. Moreover, at most 84% of the re-
source capacity can be used for guaranteed service.

We propose Credit-Controlled Static-Priority arbitration
for scheduling access to SoC resources. CCSP resem-
bles an arbiter with a rate regulator that enforces a (σ, ρ)
constraint [9] on requested service together with a static-
priority scheduler, a combination we refer to as Sigma-Rho
Static-Priority (SRSP) in this paper. Similarly to SRSP, the
CCSP rate regulator replenishes the service available to a re-
questor incrementally, instead of basing it on frames, decou-
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pling allocation granularity and latency. Both arbiters fur-
thermore use priorities to decouple latency and rate. How-
ever, instead of enforcing a (σ, ρ) constraint on requested
service, like SRSP, CCSP enforces it on provided service.
Regulating provided service reduces the complexity of the
implementation, and allows a preemptive arbiter to effi-
ciently handle requests with unknown sizes. We further-
more show that CCSP has a small hardware implementation
that runs at high clock speeds.

3. Formal model

In this section, we introduce the formal model used in
this paper. We explain how service curves are used to model
the interaction between the requestors and the resource in
Section 3.1. We then discuss the models used to bound
requested service and provided service in Section 3.2 and
Section 3.3, respectively.

Throughout this paper, we use capital letters (A) to de-
note sets, hats to denote upper bounds (â), and checks to
denote lower bounds (ǎ). Subscripts are used to disam-
biguate between variables belonging to different requestors,
although for clarity these subscripts are omitted when they
are not required. To emphasize the generality of our ap-
proach, and its applicability to a wide range of resources,
we abstract from a particular target resource, such as mem-
ories or (multi-hop) interconnects. We adopt an abstract
resource view, where a service unit corresponds to the ac-
cess granularity of the resource. Time is discrete and a time
unit, referred to as a cycle, is defined as the time required
to serve such a service unit. We use closed discrete time
intervals and [τ, t] hence includes all cycles in the sequence
〈τ, τ + 1, ..., t − 1, t〉.

3.1. Service curves

We use service curves [6] to model the interaction be-
tween the resource and the requestors. These service curves
are typically cumulative and monotonically non-decreasing
in time. We start by defining two operators for working with
service curves in Definition 1 and Definition 2.

Definition 1. ξ(t) denotes the value of a service curve ξ at
cycle t.

Definition 2. ξ(τ, t) denotes the difference in values be-
tween the endpoints of the closed interval [τ, t], where
t ≥ τ , and is defined as ξ(τ, t) = ξ(t + 1) − ξ(τ).

The resource is shared between a set of requestors, as
stated in Definition 3. A requestor generates requests of
variable but bounded size, as defined in Definition 4.

Definition 3 (Set of requestors). The set of requestors
sharing the resource is denoted R.

Definition 4 (Request). The k:th request (k ∈ N) from a
requestor r ∈ R is denoted ωk

r ∈ Ωr. The size of ωk
r in

service units is denoted s(ωk
r ) : Ωr → N+.

Requests arrive in separate buffers per requestor at the
resource according to Definition 5. For clarity, it is assumed
that only a single request arrives per requestor in a partic-
ular cycle, although this is easy to generalize. A request is
considered to arrive as an impulse when it has completely
arrived, which for instance in the case of a memory con-
troller is upon arrival of the last bit of the request. This is
captured by the requested service curve, w, defined in Defi-
nition 6. Note that Definitions 5 and 6 state that a requested
service curve at time t+1 accounts for a request with arrival
time t + 1.

Definition 5 (Arrival time). The arrival time of a request
ωk

r from a requestor r ∈ R is denoted ta(ωk
r ) : Ωr → N+,

and corresponds to the cycle in which ωk
r has completely

arrived.

Definition 6 (Requested service curve). The requested
service curve of a requestor r ∈ R is denoted wr(t) : N →
N, where wr(0) = 0 and

wr(t + 1) =

{

wr(t) + s(ωk
r ) ∃ωk

r : ta(ωk
r ) = t + 1

wr(t) @ωk
r : ta(ωk

r ) = t + 1

The scheduler in the resource arbiter attempts to sched-
ule a requestor every cycle according to its particular
scheduling policy, according to Definition 7. The first cy-
cle in which a request ωk is scheduled is referred to as its
starting time, ts(ω

k), defined in Definition 8.

A
cc

um
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at
ed

se
rv

ic
e

Time [cycles]

w

w′

q(tf(ω
k))

s(ωk) tf(ω
k)

ta(ωk) ts(ω
k)

Figure 1. Service curves and representations
of the surrounding concepts.

Definition 7 (Scheduled requestor). The scheduled re-
questor at a time t is denoted γ(t) : N → R ∪ {∅}.

Definition 8 (Starting time of a request). The starting
time of a request ωk

r is denoted ts(ω
k
r ) : Ωr → N, and

is defined as the smallest t at which ωk
r is scheduled.
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The provided service curve, w′, defined in Definition 9,
reflects the amount of service units provided by the resource
to a requestor. A service unit takes one cycle to serve. The
provided service is hence increased at t+1, if a requestor is
scheduled at t. A request leaves the resource when the last
service unit of the request has been served, corresponding
to when the last bit is read or written in case of a memory
controller. An illustration of a requested service curve and
a provided service curve is provided in Figure 1.

Definition 9 (Provided service curve). The provided ser-
vice curve of a requestor r ∈ R is denoted w′

r(t) : N → N,
where w′

r(0) = 0 and

w′
r(t + 1) =

{

w′
r(t) + 1 γ(t) = r

w′
r(t) γ(t) 6= r

The finishing time of a request corresponds to the first
cycle in which a request is completely served, as defined in
Definition 10. The amount of requested service that has not
been served at a particular time is referred to as the backlog
of a requestor and is defined in Definition 11.

Definition 10 (Finishing time of a request). The finish-
ing time of a request ωk

r is denoted tf(ω
k
r ) : Ωr → N,

and is defined as tf(ω
k
r ) = min({t | t ∈ N ∧ w′

r(t) =
w′

r(ts(ω
k
r )) + s(ωk

r )}).

Definition 11 (Backlog). The backlog of a requestor r ∈ R
at a time t is denoted qr(t) : N → N, and is defined as
qr(t) = wr(t) − w′

r(t).

Definition 12 (Set of backlogged requestors). The set of
requestors that are backlogged at t is defined as Rq

t =
{r | ∀r ∈ R ∧ qr(t) > 0}.

To work with service curves analytically, traffic models
are used to characterize their behaviors. This abstraction
has the benefit that analytical results can be derived with-
out exact knowledge of a service curve [31]. Characteriza-
tions that bound the requested and provided service curves
are required to provide an upper bound on latency, which
is needed to satisfy the requirements of hard real-time re-
questors.

3.2. Requested service model

We use the (σ, ρ) model [9] to characterize the requested
service curve. The model uses a linear function to express a
burstiness constraint, and is frequently used to upper bound
the requested service curve in an interval. The bounding
function is determined by two parameters, σ and ρ, cor-
responding to burstiness and average request rate, respec-
tively. Definition 13 defines a (σ, ρ)-constrained service
curve, and its graphical interpretation is shown in Figure 2.

A
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at
ed

se
rv

ic
e

Time [cycles]

w

Θ

σ = σ
′

w
′

ρ = ρ
′

w̌
′

ŵ

ŵ
′

Figure 2. Service curves along with their cor-
responding bounds.

Definition 13 ((σ, ρ) constraint). A service curve, ξ, is
defined to be (σ, ρ) constrained in an interval [τ, t] if
ξ̂(τ, t) = σ + ρ · (t − τ + 1). σ, ρ ∈ R+ and ρ ≤ 1.

Hard real-time requestors typically correspond to hard-
ware components with regular and predictable access pat-
terns that lend themselves to characterization. Soft real-
time requestors, however, are typically burstier than their
hard real-time counterparts, and may hence have a σ that
is very large. Soft real-time requestors may additionally be
very difficult to characterize, as applications become more
dynamic and input dependent. However, in this paper, we
assume that all requestors have been characterized accord-
ing to Definition 14. An example of how to perform this
characterization is presented in [27].

Definition 14 (Requestor). A requestor r ∈ R is charac-
terized by (σr, ρr), which is a (σ, ρ) constraint on wr.

3.3. Provided service model

The purpose of the provided service model is to give a
lower bound on the provided service curve based on the
service allocation of a requestor. The service allocated to
a requestor in our model depends on two parameters, as de-
fined in Definition 15. These are the allocated service rate,
ρ′, and allocated burstiness, σ′, respectively. The definition
states three constraints that must be satisfied in order for a
configuration to be valid: 1) the allocated service rate must
be at least equal to the average request rate, ρ, to satisfy the
service requirement of the requestor, and to maintain finite
buffers, 2) it is not possible to allocate more service to the
requestors than what is offered by the resource, and 3) the
allocated burstiness must be sufficiently large to accommo-
date a service unit. The last condition is required for the
latency bound derived in Section 5 to be valid.

Definition 15 (Allocated service). The service allocation
of a requestor r ∈ R is defined as (σ′

r, ρ
′
r) ∈ R+ × R+.
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For a valid allocation it holds that ∀r ∈ R : ρ′
r ≥ ρr,

∑

∀r∈R ρ′r ≤ 1, and ∀r ∈ R : σ′
r ≥ 1.

Our provided service model is based on the notion of
active periods. Definition 16 states that a requestor is active
at t if it is either live at t (Definition 17), backlogged at t, or
both. Definition 17 states that a requestor must on average
have requested service according to its allocated rate since
the start of the latest active period to be considered live at a
time t.

Definition 16 (Active period). An active period of a re-
questor r ∈ R is defined as the maximum interval [τ1, τ2],
such that ∀t ∈ [τ1, τ2] : wr(τ1−1, t−1) ≥ ρ′

r ·(t−τ1+1) ∨
qr(t) > 0. Requestor r is active ∀t ∈ [τ1, τ2].

Definition 17 (Live requestor). A requestor r ∈ R is de-
fined as live at a time t during an active period [τ1, τ2] if
wr(τ1 − 1, t − 1) ≥ ρ′

r · (t − τ1 + 1).

Definition 18 (Set of active requestors). The set
of requestors that are active at t is defined as
Ra

t = {r | ∀r ∈ R ∧ r active at t}.

Definition 19 (Set of live requestors). The set
of requestors that are live at t is defined as
Rl

t = {r | ∀r ∈ R ∧ r live at t}.

Figure 3 illustrates the relation between being live, back-
logged and active. Three requests arrive starting from τ1,
keeping the requestor live until τ3. The requestor is initially
both live and backlogged, but the provided service curve
catches up with the requested service curve at τ2. This puts
the requestor in a live and not backlogged state until τ3.
The requestor is neither live nor backlogged between τ3 and
τ4, as no additional requests arrive at the resource. The re-
questor becomes live and backlogged again at τ4, since two
additional requests arrive within a small period of time. The
requestor stays in this state until τ5, since not enough ser-
vice is provided to remove the backlog. The requestor is
hence backlogged but not live at τ5, and remains such until
τ6. The requestor in Figure 3 is active between τ1 and τ3

and between τ4 and τ6, according to Definition 16. Note
from this example that a live requestor is not necessarily
backlogged, nor vice versa.

The service provided to a requestor is defined by two
parameters Θ and ρ′, being latency and allocated rate, re-
spectively. To disambiguate, we refer to Θ, defined in Defi-
nition 20, as service latency throughout this paper. The def-
inition states that service is provided to an active requestor
according to the allocated rate, ρ′, after the service latency,
Θ. This means that ρ′ and Θ define a lower bound, w̌′, on
the provided service curve during an active period, as shown
in Figure 2.
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w
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w
′

Figure 3. Service curves showing the relation
between being live, backlogged, and active.

Definition 20 (Service latency). The service latency of a
requestor r ∈ R is defined as the minimum Θr ∈ N,
such that during any active period [τ1, τ2] it holds that
∀t ∈ [τ1, τ2] : w̌′

r(τ1, t) = max(0, ρ′
r · (t − τ1 + 1 − Θr)).

We show in Section 5 that CCSP belongs to the class
of LR servers [28], which is a general frame-work for an-
alyzing scheduling algorithms. The lower bound on pro-
vided service in Definition 20 is a key characteristic of LR
servers. The authors of [28] use this bound to derive general
bounds on buffering and latency that are valid for any com-
bination of LR servers in sequence. It is furthermore shown
in [30] that a LR server can be modeled as a cyclo-static
data-flow graph with two tasks. This allows LR servers
to be used also in data-flow analysis, which has the added
benefits that the presence of flow control can be accurately
modeled and that application-level throughput constraints
can be satisfied.

4. Credit-Controlled Static-Priority

A CCSP arbiter consists of a rate regulator and a sched-
uler, following the decomposition from [32]. We start in
Section 4.1 by providing an overview of the main idea, be-
fore discussing the rate regulator and scheduler separately
in Sections 4.2 and 4.3, respectively.

4.1. Overview

A rate regulator provides accounting and enforcement
and determines which requests are eligible for scheduling at
a particular time, considering their allocated service. There
are two types of enforcement. A work-conserving arbiter
is never idle when there is a backlogged requestor. In con-
trast, a rate regulator in a non-work-conserving arbiter does
not schedule a request until it becomes eligible, even though
the resource may be idle. To conserve space, we only dis-
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cuss the non-work-conserving case in this paper. The work-
conserving case is covered in [4].

The purpose of a rate regulator is to isolate requestors
from each other and to protect requestors that do not ask
for more service than they are allocated from those that do.
This form of protection is a key property in providing guar-
anteed service to requestors with timing constraints [31].
A rate regulator protects requestors by enforcing burstiness
constraints on either requested service or provided service.

A rate regulator that enforces an upper bound on pro-
vided service, such as those in [8, 11, 15, 17, 20, 25] and
the CCSP rate regulator, is shown in Figure 4. As seen
in the figure, the rate regulator is positioned after the re-
quest buffers. It is hence only aware of requests at the heads
of the buffers, and cannot constrain arrival of requests in
any way. The scheduler communicates the id of the sched-
uled requestor, γ(t), back to the rate regulator every cycle.
The regulator uses this information to update the accounting
mechanism. This type of rate regulator operates by simply
determining if the request at the head of each request buffer
is eligible for scheduling.

buffers
Request

regulator
Rate

Scheduler

γ(t)

wr0
(t)

wr1
(t)

w′

r0
(t)

w′

r1
(t)

Figure 4. An arbiter with a regulator that en-
forces an upper bound on provided service.

Enforcing an upper bound on provided service as op-
posed to requested service has two benefits: 1) the im-
plementation of the regulator is less complex, and 2) the
amount of work associated with a particular request does
not have to be known. We discuss these benefits in more
detail.

A regulator that enforces an upper bound on provided
service only requires knowledge about the request at the
head of each request queue. Conversely, most regulators
that enforce an upper bound on requested service, such
as [9, 23, 32], need information about all requests that ar-
rive during a cycle. This incurs additional complexity in a
hardware implementation, especially if requests can arrive
with higher frequency than with which they are parsed.

A difficulty in arbitration is that the amount of work as-
sociated with a particular request is not always known be-
fore it has been served. For instance, the amount of time re-
quired to decode a video frame on a processor is not known
when the work is scheduled. This situation cannot be han-
dled if requested service is regulated, unless worst-case as-
sumptions are used to estimate the amount of work, which

is very inefficient if the variance in the amount of work is
large. This is efficiently handled when regulating provided
service by charging for a single service unit at a time. This
allows a preemptive scheduler to interrupt a requestor that
runs out of budget and schedule another one.

Unlike SRSP, CCSP enjoys the aforementioned benefits.
CCSP’s incremental replenishment of service furthermore
decouples allocation granularity and latency, in contrast to
the frame-based provided service regulators in [15, 17, 20,
25].

4.2. Rate regulator

The CCSP rate regulator enforces an upper bound on
provided service, as explained in Section 4.1. We regulate
provided service based on active periods, and define the up-
per bound on provided service according to Definition 21.
The intuition behind the definition is that the upper bound
on provided service of an active requestor increases accord-
ing to the allocated rate every cycle. Conversely, for an in-
active requestor, the bound is limited to w′(t) + σ′, a value
that depends on the allocated burstiness. This prevents that
a requestor that has been inactive for an extended period of
time increases its bound, possibly resulting in starvation of
other requestors once it becomes active again. Note that this
implies that the upper bound on provided service is not nec-
essarily monotonically non-decreasing in time, as shown in
Figure 5. The requestor in the figure is live until τ1, but re-
mains active until τ2 where w′ catches up to w. According
to Definition 21, this results in ŵ′(τ2 + 1) < ŵ′(τ2), since
ŵ′(τ2) > w′(τ2) + σ′. The requestor starts a new active
period at τ3, causing ŵ′ to increase again.

Definition 21 (Provided service bound). The enforced up-
per bound on provided service of a requestor r ∈ R is de-
noted ŵ′

r(t) : N → R+, where ŵ′
r(0) = σ′

r and

ŵ′
r(t + 1) =

{

ŵ′
r(t) + ρ′r r ∈ Ra

t

w′
r(t) + σ′

r r /∈ Ra
t

(1)

It is not possible to perform accounting and enforcement
in hardware based on ŵ′, since limt→∞ ŵ′(t) = ∞, result-
ing in overflow of finite counters. Instead, the accounting
mechanism in the rate regulator is based on the potential of
a requestor, as defined in Definition 22. The potential of
a requestor is bounded since the arbiter guarantees a lower
bound on provided service, as we will show in Section 5.
The accounting used by the CCSP rate regulator is defined
according to Definition 23. It is shown in [4] that this ac-
counting mechanism corresponds to a recursive definition
of potential, and hence that ∀t ∈ N : π(t) = π∗(t).
The graphical interpretation of potential is illustrated in Fig-
ure 5.
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Figure 5. The upper bound on provided ser-
vice is not necessarily non-decreasing.

Definition 22 (Potential). The potential of a requestor
r ∈ R is denoted πr(t) : N → R, and is defined as
πr(t) = ŵ′

r(t) − w′
r(t).

Definition 23 (Accounting). The accounted potential of a
requestor r ∈ R is denoted π∗

r (t) : N → R, where π∗
r (0) =

σ′
r and

π∗
r (t + 1) =











π∗
r (t) + ρ′r − 1 r ∈ Ra

t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ γ(t) 6= r

σ′
r r /∈ Ra

t ∧ γ(t) 6= r

(2)

Enforcement in the rate regulator takes place before the
accounting is updated, and is performed by determining if
a request from a requestor is eligible for scheduling. A re-
quest becomes eligible at its eligibility time. Definition 24
states three conditions that must be satisfied for a request at
this time: 1) all previous requests from the requestor must
have been served, 2) the requestor must be backlogged, and
3) the requestor must have at least enough potential to serve
one service unit, including the service earned when the ac-
counting is updated. The eligibility criterion for a requestor
is formally defined in Definition 25.

Definition 24 (Eligibility time). The eligibility time of a
request ωk

r from a requestor r ∈ R is denoted te(ω
k
r ), and

is defined as the smallest t at which: 1) ∀i < k : t ≥ tf(ω
i
r),

and 2) wr(t) > w′
r(t), and 3) π∗

r (t) ≥ 1 − ρ′r.

Definition 25 (Eligible requestor). Requestor r is defined
as eligible at t if ∃k ∈ N : t ∈ [te(ω

k
r ), tf(ω

k
r ) − 1] ∧

π∗
r (t) ≥ 1 − ρ′r ∧ wr(t) > w′

r(t).

Definition 26 (Set of eligible requestors). The set of re-
questors that are eligible for scheduling at t is defined as
Re

t = {r | ∀r ∈ R ∧ r eligible at t}.

4.3. Scheduler

The CCSP arbiter uses a static-priority scheduler, as it
decouples latency and rate and has a low-cost hardware im-
plementation. Each requestor is assigned a priority level,

p, as stated in Definition 27, where a lower level indicates
higher priority. We do not allow requestors to share prior-
ity levels. Sharing priorities, as done in [32], results in a
situation where equal priority requestors must assume that
they all have to wait for each other in the worst-case, re-
sulting in less tight bounds. In this paper, we consider a
scheduler that is preemptive on the granularity of a sin-
gle service unit. A preemptive non-work-conserving static-
priority scheduler schedules the highest priority eligible re-
questor every cycle, as defined in Definition 29. The case
of a non-preemptive scheduler is covered in [4].

Definition 27 (Priority level). A requestor r ∈ R has a
priority level pr, such that ∀ri, rj ∈ R, ri 6= rj : pri

6= prj
.

Definition 28 (Set of higher priority requestors). The set
of requestors with higher priority than ri ∈ R is defined as
R+

ri
= {rj | ∀rj ∈ R ∧ pri

> prj
}.

Definition 29 (Static-priority scheduler). The scheduled
requestor at a time t in a preemptive non-work-conserving
static-priority scheduler is defined as

γ(t) =

{

ri s.t. ri ∈ Re
t ∧ @rj ∈ Re

t : prj
< pri

Re
t 6= ∅

∅ Re
t = ∅

5. Arbiter Analysis

In this section, we derive analytical properties of the
CCSP arbiter. First, we define and upper bound the interfer-
ence experienced by a requestor during an interval. We then
use this bound to derive the service guarantee of CCSP, and
to prove that it belongs to the class of LR servers. Lastly,
we upper bound the finishing time of a request, based on the
derived service guarantee.

Definition 30 states that the interference experienced by
a requestor in an interval consists of two parts. The first part
is concerned with the potential of higher priority requestors
at the start of the interval and the second with the increase of
their provided service bounds during the interval. Together,
these parts determine how much an interfering requestor can
maximally be scheduled before being slowed down by the
rate regulator.

Definition 30 (Interference). The interference experienced
by a requestor r ∈ R during an interval [τ1, τ2] is denoted
ir(τ1, τ2) : N × N → R, and is defined as

ir(τ1, τ2) =
∑

∀rj∈R
+
ri

(π∗
rj

(τ1) + ŵ′
rj

(τ1, τ2)) (3)

To compute the upper bound on interference, we will
bound the two parts of Equation (3) separately. First, we
introduce two lemmas proven in [4]. Lemma 1 shows some
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important relations between the requested service curve and
the provided service curve at the start of an active pe-
riod, and Lemma 2 establishes a relation between poten-
tial and eligibility for active requestors. We then proceed
in Lemma 3 by bounding the increase in the upper bound
on provided service during an interval, corresponding to the
second part of Equation (3).

Lemma 1. If τ1 is the start of an active period then
w(τ1) > w(τ1 − 1) = w′(τ1) = w′(τ1 − 1).

Lemma 2. ∀r ∈ Ra
t : π∗

r (t) > σ′
r − ρ′r ⇒ r ∈ Re

t .

Lemma 3. ŵ′
r(τ, t) ≤ ρ′ · (t − τ + 1).

Proof. We prove the lemma by showing that the inequal-
ity holds when ŵ′

r(τ, t) is maximal. This occurs when
τ, t ∈ [τ1, τ2], where [τ1, τ2] is an active period. This in
turn is proved by showing that the first rule of Equation (1)
implies ŵ′

r(t + 1) > ŵ′
r(t), while the second rule implies

ŵ′
r(t + 1) ≤ ŵ′

r(t).
The first rule in Equation (1) implies that

ŵ′
r(t + 1) > ŵ′

r(t), since it follows from Definition 13 and
Definition 15 that ρ′

r ≥ 0.
We split the analysis of the second rule in Equation (1)

into two cases. In the first case, the requestor is inactive
at both t − 1 and t, corresponding to multiple cycles of
inactivity. In the second case, the requestor is active at t−1
and inactive at t, meaning it is ending its active period.

Case 1: r /∈ Ra
t−1 ∧ r /∈ Ra

t

From the second rule in Equation (1), we get that
ŵ′

r(t+1) = w′
r(t)+σ′

r. Since an inactive requestor cannot
be scheduled, it must hold that w′

r(t) = w′
r(t − 1). It

hence follows that ŵ′
r(t+1) = ŵ′

r(t) if r /∈ Ra
t−1∧r /∈ Ra

t .

Case 2: r ∈ Ra
t−1 ∧ r /∈ Ra

t

We proceed by showing that this case implies
ŵ′

r(t + 1) < ŵ′
r(t). Let t = τ2 + 1, where [τ1, τ2]

defines an active period. We must hence show that

ŵ′
r(τ2 + 2) < ŵ′

r(τ2 + 1) (4)

According to Definition 2, ŵ′
r(τ2 + 1) = ŵ′

r(τ1) +
ŵ′

r(τ1, τ2). From Lemma 1 and the second rule in Equa-
tion (1), we get that ŵ′

r(τ1) = w′
r(τ1 −1)+σ′

r = w′
r(τ1)+

σ′
r, since r /∈ Ra

τ1−1. We furthermore know from the first
rule in Equation (1) that ŵ′

r(τ1, τ2) = ρ′r · (τ2 − τ1 + 1),
since ∀t ∈ [τ1, τ2] : r ∈ Ra

t . This results in

ŵ′
r(τ2 + 1) = w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (5)

The second rule in Equation (1) states that ŵ′
r(τ2 + 2) =

w′
r(τ2 +1)+σ′ since r /∈ Ra

τ2+1. Rewriting this using Def-
inition 2 results in ŵ′

r(τ2 +2) = w′
r(τ1) + w′

r(τ1, τ2) + σ′
r.

From Definition 16 and Lemma 1, we know that r /∈

Ra
τ2+1 ⇒ w′

r(τ1−1, τ2) = wr(τ1−1, τ2) < ρ′r · (τ2−τ1 +
1), as the requestor is neither live nor backlogged at τ2 + 1.
Putting these results together gives us

ŵ′
r(τ2 + 2) < w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (6)

By substituting Equation (5) and Equation (6) into Equa-
tion (4), we see that ŵ′

r(τ2 + 2) < ŵ′
r(τ2 + 1).

We hence conclude that ŵ′
r(τ, t) is maximal when τ, t ∈

[τ1, τ2], where [τ1, τ2] is an active period. According to Def-
inition 22 and the first rule of Equation (2), this implies that
ŵ′

r(τ, t) ≤ ρ′ · (t − τ + 1).

We define the concept of aggregate potential of a set of
requestors in Definition 31 and show in Lemma 4 that it
cannot increase, as long as a requestor in the set is scheduled
every cycle. This is a key result that bounds the first part of
Equation (3) in Lemma 5 and leads to an upper bound on
interference in Lemma 6.

Definition 31 (Aggregate potential). The aggregate poten-
tial of a set of requestors R′ ⊆ R is defined according to
∑

∀r∈R′ π∗
r (t) =

∑

∀r∈R′ ŵ′
r(t) −

∑

∀r∈R′ w′
r(t).

Lemma 4. For a set of requestors R′ ⊆ R, it holds that
∀t ∈ N : (∃rk ∈ R′ : γ(t) = rk) ⇒

∑

∀r∈R′ π∗
r (t + 1) ≤

∑

∀r∈R′ π∗
r (t).

Proof. According to Definition 2 and the definition of ag-
gregate potential in Definition 31
∑

∀r∈R′

π∗
r (t+1) =

∑

∀r∈R′

π∗
r (t)+

∑

∀r∈R′

ŵ′
r(t, t)−

∑

∀r∈R′

w′
r(t, t)

According to Lemma 3,
∑

∀r∈R′ ŵ′(t, t) ≤
∑

∀r∈R′ ρ′r,
where equality is reached if all requestors are active at t.
From Definition 9, we also get that

∑

∀r∈R′ w′
r(t, t) = 1 if

a requestor in R′ is scheduled at t. Hence, if ∀r ∈ R′ :
r ∈ Ra

t and ∃rk ∈ R′ : γ(t) = rk, then
∑

∀r∈R′

π∗
r (t + 1) ≤

∑

∀r∈R′

π∗
r (t) +

∑

∀r∈R′

ρ′r − 1

Finally,
∑

∀r∈R′ ρ′r ≤ 1, according to Definition 15, which
concludes the proof.

Lemma 5. For a requestor ri ∈ R, it holds that ∀t ∈ N :
∑

∀rj∈R
+
ri

π∗
rj

(t) ≤
∑

∀rj∈R
+
ri

σ′
rj

. The equality occurs at
any time t for which ∀rj ∈ R+

ri
: rj /∈ Ra

t−1.

Proof. We prove the lemma by induction on t.
Base case: The lemma holds at t = 0, since Definition 23
states that ∀r ∈ R : π∗

r (0) = σ′
r.

Inductive step: At t + 1, we examine two different
cases for the premise at t. In the first case there exists a
higher priority eligible requestor, and in the second case
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there does not.
Case 1: (R+

ri
∩ Re

t ) 6= ∅
Picking rk ∈ (R+

ri
∩ Re

t ), according to Definition 29
and applying Lemma 4 results in the first inequality in
Equation (7). The second inequality follows from the
induction hypothesis.

∑

∀rj∈R
+
ri

π∗
rj

(t + 1) ≤
∑

∀rj∈R
+
ri

π∗
rj

(t) ≤
∑

∀rj∈R
+
ri

σ′
rj

(7)

Case 2: (R+
ri
∩ Re

t ) = ∅
No higher priority requestor is eligible in this case. We
will show that this implies that π∗(t + 1) ≤ σ′ both for
requestors with π∗(t) > σ′ − ρ′ and π∗(t) ≤ σ′ − ρ′.

According to Lemma 2, it must hold that ∀rj ∈ R+
ri
∧

rj /∈ Re
t : π∗

rj
(t) > σ′

rj
− ρ′rj

⇒ rj /∈ Ra
t . The

third rule of Equation (2) hence states that ∀rj ∈ R+
ri

:
π∗

rj
(t) > σ′

rj
− ρ′rj

⇒ π∗
rj

(t + 1) = σ′
rj

. For the other
case by Definition 23, ∀rj ∈ R+

ri
: π∗

rj
(t) ≤ σ′

rj
− ρ′rj

⇒

π∗
rj

(t + 1) ≤ σ′
rj

. Hence, ∀rj ∈ R+
ri

: π∗
rj

(t + 1) ≤ σ′
rj

.
This means that

∑

∀rj∈R
+
ri

π∗
rj

(t + 1) ≤
∑

∀rj∈R
+
ri

σ′
rj

,
which proves the second case.

The aggregate potential of higher priority requestors
is maximal when ∀rj ∈ R+

ri
: π∗

rj
(t) = σ′

rj
, which occurs

at any time t for which ∀rj ∈ R+
ri

: rj /∈ Ra
t−1.

Lemma 6 (Maximum interference). The maximum inter-
ference experienced by a requestor ri ∈ R during an inter-
val [τ1, τ2] occurs when all higher priority requestors start
an active period at τ1 and remain active ∀t ∈ [τ1, τ2], and
equals

îri
(τ1, τ2) =

∑

∀rj∈R
+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1) (8)

Proof. We know from Equation (3) that interference is de-
fined as iri

(τ1, τ2) =
∑

∀rj∈R
+
ri

(π∗
rj

(τ1) + ŵ′
rj

(τ1, τ2)).
Lemma 5 states that

∑

∀rj∈R
+
ri

π∗
rj

(τ1) ≤
∑

∀rj∈R
+
ri

σ′
rj

,
which is maximal when all higher priority requestors are
inactive at τ1 − 1. We furthermore know from Lemma 3
that

∑

∀rj∈R
+
ri

ŵ′
rj

(τ1, τ2) ≤
∑

∀rj∈R
+
ri

ρ′rj
· (τ2 − τ1 + 1),

which is maximal when ∀t ∈ [τ1, τ2] : rj ∈ Ra
t . Hence,

îri
(τ1, τ2) =

∑

∀rj∈R
+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1) when all

higher priority requestors start an active period at τ1, and
remain active ∀t ∈ [τ1, τ2].

We continue in Theorem 1 by deriving the service guar-
antee of a CCSP arbiter, and to compute its service la-
tency. We then prove in Theorem 2 that CCSP belongs
to the class of LR servers. These theorems hold only for
requestors that are eligible during backlogged periods, i.e.

when r ∈ Rq
t ⇒ r ∈ Re

t . This is accomplished by configur-
ing ρ′ ≥ ρ, according to Definition 15, and letting σ′ ≥ σ.
We configure σ′ = σ for hard real-time requestors, since
there is no benefit in allocating higher burstiness than re-
quested. Configuring σ′ < σ causes the regulator to limit
the burstiness of a requestor, resulting in an increase in ser-
vice latency. This is useful to protect hard real-time re-
questors from bursty soft real-time requestors that are not
interested in bounds on service latency.

Theorem 1 (Service guarantee). An active requestor ri ∈
R, for which σ′

ri
≥ σri

, is guaranteed a minimum service
during an active period [τ1, τ2] according to ∀t ∈ [τ1, τ2] :
w̌′

ri
(τ1, t) = max(0, ρ′

ri
· (t − τ1 + 1 − Θri

)), where

Θri
=

∑

∀rj∈R
+
ri

σ′
rj

1 −
∑

∀rj∈R
+
ri

ρ′rj

(9)

Proof. It suffices to show that the theorem holds for inter-
vals where τ2−τ1 +1 > Θri

, as these are the only intervals
for which w̌′

ri
(τ1, τ2) > 0. For these intervals, we must

show that

∀t ∈ [τ1, τ2] : w̌′
ri

(τ1, t) = ρ′ri
· (t − τ1 + 1 − Θri

) (10)

We prove the theorem by splitting the active period in two
cases according to Definition 16. In the first case, we look
at the behavior of ri during backlogged periods within the
active period, where the k:th backlogged period is denoted
[αk, βk]. It is assumed that ∀t ∈ [αk, βk] : ri ∈ Re

t . In the
second case, the requestor is in a live and not backlogged
state.

Case 1: ∀t ∈ [αk, βk] : ri ∈ Rq
t

The requestor is eligible in the interval since
σ′

ri
≥ σri

∧ r ∈ Rq
t ⇒ r ∈ Re

t . There are
(βk − αk + 1) units of service available in the backlogged
interval. An eligible requestor in a static-priority scheduler
cannot access the resource whenever it is used by higher
priority requestors. The minimum service available to
ri, denoted w̌a

ri
, can hence be expressed according to

w̌a
ri

(αk, βk) = βk − αk + 1 − îri
(αk, βk). Since ri is

continuously backlogged and eligible in the interval, it
follows that w̌′

ri
(αk, βk) = w̌a

ri
(αk, βk). We proceed by

using the result from Lemma 6 to bound the maximum
possible interference.

w̌′
ri

(αk, βk) = βk − αk + 1−
∑

∀rj∈R
+
ri

σ′
rj

−
∑

∀rj∈R
+
ri

ρ′rj
· (βk − αk + 1) (11)
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Combining Equation (10) and Equation (11) results in

ρ′ri
· (βk − αk + 1 − Θri

) =

βk −αk + 1−
∑

∀rj∈R
+
ri

σ′
rj
−

∑

∀rj∈R
+
ri

ρ′rj
· (βk −αk + 1)

We replace ρ′ri
by 1 −

∑

∀rj∈R
+
ri

ρ′rj
, which is valid since

1 −
∑

∀rj∈R
+
ri

ρ′rj
≥ ρ′ri

, according to Definition 15.
Solving for Θri

results in Equation (9), proving the first
case.

Case 2: ∀t : ri ∈ Rl
t ∧ ri /∈ Rq

t

According to Definition 17, ri ∈ Rl
t implies that

w̌ri
(τ1 − 1, t − 1) = ρ′

ri
· (t − τ1 + 1). On the other

hand, Definition 11 states that ri /∈ Rq
t means that

wri
(t) = w′

ri
(t). By combining these results we get that

w̌′
ri

(τ1 − 1, t − 1) = ρ′
ri
· (t − τ1 + 1) (12)

We know from Lemma 1 that w′
ri

(τ1 − 1) =
w′

ri
(τ1). We also know from Definition 9 that w′

ri
(t, t) ≥

0. Substituting these results into Equation (12) gives
us w̌ri

(τ1, t) = ρ′ri
· (t − τ1 + 1), proving the second

case.

Theorem 2 (LR server). A CCSP arbiter belongs to the
class of LR servers, and the service latency of an active
requestor ri ∈ R, for which σ′

ri
≥ σri

, is equal to Equa-
tion (9).

Proof. According to [28], it is sufficient to show that
∀t ∈ [τ1, τ2] : r ∈ Re

t ⇒ w̌′
ri

(τ1, τ2) = max(0, ρ′
ri
· (τ2 −

τ1 + 1 − Θri
)). This is shown in the first case of the proof

of Theorem 1.

Theorem 2 proves that CCSP belongs to the class of LR
servers. Our derived service latency is furthermore the same
as that of SRSP, derived in [2]. Note in Equation (9) that
latency and rate are decoupled by the priority level of a re-
questor. We conclude this section by using the service guar-
antee to derive a bound on the finishing time of a request in
Theorem 3.

Theorem 3 (Finishing time). The finishing time of a re-
quest ωk

r from a requestor r ∈ R, for which it holds that
∀t ∈ [te(ω

k
r ), tf(ω

k
r ) − 1] : r ∈ Ra

t , is bounded according
to

tf(ω
k
r ) ≤ te(ω

k
r ) + Θr +

s(ωk
r )

ρ′r

Proof. We know from Theorem 1 that a requestor in an
active period [τ1, τ2] receives service according to ∀t ∈
[τ1, τ2] : w̌′

ri
(τ1, t) = ρ′r · (t − τ1 + 1 − Θr). The max-

imum finishing time of ωk
r equals t + 1 for the minimum t

for which it holds that w̌′
ri

(te(ω
k
r ), t) = s(ωk

r ). We hence

get that ρ′r · (t − te(ω
k
r ) + 1 − Θr) ≥ s(ωk

r ). Solving for t

results in t ≥ te(ω
k
r ) + Θr +

s(ωk
r )

ρ′

r
− 1, which implies that

tf(ω
k
r ) ≤ te(ω

k
r ) + Θr +

s(ωk
r )

ρ′

r
.

6. Hardware implementation

The proposed arbiter, shown in Figure 6, has been im-
plemented in VHDL and integrated into the Predator DDR2
SDRAM controller [3]. This controller is used in the con-
text of a multi-processor SoC that is interconnected using
the Æthereal NoC [14]. Requests arrive at a network inter-
face (NI) on the edge of the network, where they are stored
in separate buffers per requestor.

cfg

Rate regulator

request
buffers

SchedulerNI

bank
R

egister

Update
state

E
ligibility test 

LUT

P
riority sw

itch

qr(t)

π∗

r
(t)

γ(t)

Figure 6. A CCSP arbiter with three ports.

A register bank contains a discrete representation of the
service allocation and accounted potential for every re-
questor. These registers are programmable using memory
mapped IO for run-time (re)configuration via the NoC. It is
shown in [4] that the amount of over-allocation can be made
arbitrarily small by increasing the precision of this repre-
sentation. The static-priority scheduler is implemented by a
tree of multiplexers that simply grants access to the highest
priority requestor that is eligible, an operation that is faster
than comparing multiple-bit deadlines, as done in [22]. The
scheduled requestor is output from the arbiter, but also
fed back to a unit that updates the register bank to reflect
changes in potential, as discussed in Section 4.1. Config-
urable priorities are implemented with a programmable pri-
ority switch that maps the request buffers according to their
priority levels. The switch is combined with a look-up table
(LUT) that remaps the index of the scheduled requestor, as
shown in Figure 6.

Synthesis of the arbiter in a 90 nm CMOS process with
six ports results in a cell area of 0.0223 mm2 with a speed
target of 200 MHz, required for a DDR2-400 SDRAM de-
vice. Figure 7 illustrates the scalability of the implemen-
tation by showing the area of the arbiter for an increasing
number of ports. The speed target of 200 MHz is satisfied
for up to ten requestors and the figure suggests a linear area
increase in this range.
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7. Experimental results

We have used CCSP as a DDR2 memory controller ar-
biter in a SystemC simulation of a use-case involving an
H.264 video decoder. The H.264 decoder contains a num-
ber of requestors communicating through external memory.
Access to a DDR2-400 SDRAM is provided by a Preda-
tor SDRAM controller [3]. A benefit of this controller is
that the arbiter schedules memory accesses of 64 byte (B) to
the requestors, as opposed to scheduling time, which means
that the amount of work associated with a request is always
known. This allows us to use the same setup to experiment
with both CCSP and SRSP. The time required by the mem-
ory controller to serve a service unit corresponds to approx-
imately 80 ns.

The use-case contains a file reader (FR) that reads an
encoded image and stores it in external memory. This
requestor issues requests of 64 B each and is extremely
bursty. The decoder software is running on a TriMedia
3270 [29]. The TriMedia uses separate read and write con-
nections (TMrd, TMwr) to communicate with external mem-
ory through an L1 cache with a line size of 128 B. Finally, a
display controller (DC) reads the decoded image in blocks
of 128 B and shows it on a display. For the purpose of this
paper, the application is considered as soft real-time with
deadlines at the granularity of decoded frames. We add
two hard real-time requestors, (HRT1, HRT2), mimicked
by traffic generators, to create a hybrid system. These is-
sue read and write requests of 128 B to external memory.
High priority is assigned to the soft real-time requestors and
lower priorities to the hard real-time requestors, according
to the assignment strategy in [17].

We simulated the system with a number of different ser-
vice allocations. The allocation parameters (σ′ and ρ′) of
the hard real-time requestors were chosen such that the rate
regulator never slowed them down and violated their bounds
on service latency. For the soft real-time requestors, ρ′

Table 1. Requestor configuration and results.

Requestor σ′ ρ′ p avg. Θ max Θ Θ
TMrd 8.0 0.106 0 3.19 9 N/A
TMwr 4.0 0.061 1 8.60 18 N/A
DC 2.0 0.047 2 0.10 2 N/A
FR 2.0 0.017 3 55.67 63 N/A

HRT1 4.4 0.340 4 0.17 10 20
HRT2 3.4 0.340 5 2.23 23 47

was chosen based on measurements such that ρ′ ≥ ρ and
σ′ < σ. Table 1 lists one of the simulated configurations.
A total of 600 MB/s is allocated to the requestors, corre-
sponding to a load of 90.7% of the capacity offered by the
memory controller for a 16-bit DDR2-400 device after tak-
ing unavoidable access overhead into account [3]. Table 1
presents average service latencies and the maximum mea-
sured service latencies for all requestors after 2 · 108 ns of
simulation. The corresponding service latency bounds, ob-
tained using Equation (9), are also listed for hard real-time
requestors. Note that the average service latency of the soft
real-time requestors includes the time required to build up
sufficient potential, since σ′ < σ. The maximum measured
service latencies are lower than the bounds for both hard
real-time requestors, as expected. However, we note that
the difference between the maximum measured value and
the bound increases with lower priorities. A reason for this
is that the risk of simultaneous maximum interference from
all higher priority requestors becomes increasingly unlikely
with lower priorities. As a comparison, we inverted the pri-
orities of all requestors in the use-case, resulting in maxi-
mum measured service latencies of 4 and 0 and bounds of 5
and 0 for HRT1 and HRT2, respectively.

All simulations have been repeated with an SRSP arbiter,
and the latency results proved to be identical for every sin-
gle request for all configurations. This result, suggests that
CCSP, unlike SRSP, has the benefits of regulating provided
service, mentioned in Section 4.1, without introducing ad-
ditional latency. It is furthermore shown in [4] that the
buffering requirements and burstiness at the output of the
two arbiters are the same since they have identical service
latencies.

8. Conclusions

We present a Credit-Controlled Static-Priority (CCSP)
arbiter to schedule access to resources, such as intercon-
nect and memories in systems-on-chip. CCSP is an arbiter
with a rate regulator that enforces a burstiness constraint on
provided service together with a static-priority scheduler.
Regulating provided service, as opposed to regulating re-
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quested service has two benefits: the implementation of the
regulator is less complex, and the amount of work associ-
ated with a particular request does not have to be known.
We show that CCSP enjoys these benefits, without increas-
ing latency, compared to an arbiter regulating requested ser-
vice. We show that CCSP belongs to the class of latency-
rate (LR) servers and guarantees the allocated service rate
within a maximum latency, as required by hard real-time
applications. CCSP decouples rate and allocation granular-
ity from latency and has a low-cost implementation. An
instance with six ports running at 200 MHz requires an area
of 0.0223 mm2 in a 90 nm CMOS process.

References

[1] L. Abeni and G. Buttazzo. Resource Reservation in Dy-
namic Real-Time Systems. Real-Time Systems, 27(2), 2004.

[2] R. Agrawal and R. Rajan. Performance bounds for guar-
anteed and adaptive services. Technical Report RC20649
(91385), IBM Research, May 1996.

[3] B. Akesson et al. Predator: a predictable SDRAM memory
controller. In Proc. CODES+ISSS, 2007.

[4] B. Akesson et al. Real-Time Scheduling of Hybrid Systems
using Credit-Controlled Static-Priority Arbitration . Techni-
cal report, NXP Semiconductors, 2007.

[5] T. Bjerregaard and J. Sparsø. A scheduling discipline for
latency and bandwidth guarantees in asynchronous network-
on-chip. In ASYNC, 2005.

[6] J.-Y. L. Boudec and P. Thiran. Network calculus: a theory
of deterministic queuing systems for the internet. Springer-
Verlag New York, Inc., 2001.

[7] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Springer,
2004.

[8] H. Chao and J. Hong. Design of an ATM shaping multi-
plexer with guaranteed output burstiness. Comp. Systems
Science and Engineering, 12(2), 1997.

[9] R. Cruz. A calculus for network delay. I. Network elements
in isolation. IEEE Trans. Inf. Theory, 37(1), 1991.

[10] R. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. Proc. RTSS, 2005.

[11] A. Francini and F. Chiussi. Minimum-latency dual-leaky-
bucket shapers for packet multiplexers: theory and imple-
mentation. Proc. IWQOS, 2000.

[12] S. J. Golestani. A stop-and-go queueing framework for con-
gestion management. In Proc. SIGCOMM, 1990.

[13] K. Goossens et al. Interconnect and memory organization
in SOCs for advanced set-top boxes and TV — Evolution,
analysis, and trends. In Interconnect-Centric Design for Ad-
vanced SoC and NoC, chapter 15. Kluwer, 2004.

[14] K. Goossens et al. The Æthereal network on chip: Con-
cepts, architectures, and implementations. IEEE Des. Test.
Comput., 22(5), Sept. 2005.

[15] F. Harmsze et al. Memory arbitration and cache manage-
ment in stream-based systems. In Proc. DATE, 2000.

[16] S. Heithecker and R. Ernst. Traffic shaping for an FPGA
based SDRAM controller with complex QoS requirements.
In Proc. DAC, 2005.

[17] S. Hosseini-Khayat and A. Bovopoulos. A simple and ef-
ficient bus management scheme that supports continuous
streams. ACM TOCS, 13(2), 1995.

[18] C. R. Kalmanek and H. Kanakia. Rate controlled servers for
very high-speed networks. Proc. GLOBECOM, 1990.

[19] S. S. Kanhere and H. Sethu. Fair, efficient and low-latency
packet scheduling using nested deficit round robin. High
Performance Switching and Routing, 2001 IEEE Workshop
on, 2001.

[20] M. Katevenis et al. Weighted round-robin cell multiplexing
in a general-purpose ATM switch chip. IEEE J. Sel. Areas
Commun., 9(8), Oct. 1991.

[21] G. Lipari and E. Bini. Resource partitioning among real-
time applications. Proc. ECRTS, 2003.

[22] J. Rexford et al. A router architecture for real-time point-to-
point networks. In Proc. ISCA, 1996.

[23] J. Rexford et al. Scalable architecture for fair leaky-bucket
shaping. Proc. IEEE INFOCOM, 3, 1997.

[24] D. Saha et al. Carry-over round robin: a simple cell schedul-
ing mechanism for ATM networks. IEEE/ACM Trans. Netw.,
6(6), 1998.

[25] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In Proc. SIGCOMM, 1995.

[26] B. Sprunt et al. Aperiodic task scheduling for Hard-Real-
Time systems. Real-Time Systems, 1(1), 1989.

[27] L. Steffens et al. Real-time analysis for memory access
in media processing socs: A practical approach. In Proc.
ECRTS, 2008.

[28] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms.
IEEE/ACM Trans. Netw., 6(5), 1998.

[29] J.-W. van de Waerdt et al. The TM3270 Media-Processor.
In Proc. MICRO 38, 2005.

[30] M. H. Wiggers et al. Modelling run-time arbitration by
latency-rate servers in dataflow graphs. In Proc. SCOPES,
2007.

[31] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proceedings of the
IEEE, 83(10), Oct. 1995.

[32] H. Zhang and D. Ferrari. Rate-controlled service disciplines.
Journal of High-Speed Networks, 3(4), 1994.

14

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 9, 2009 at 07:38 from IEEE Xplore.  Restrictions apply.


