Hybrid modeling method for the analysis of a linear flux switching machine

Citation for published version (APA):

DOI:
10.1109/CEFC.2010.5481251

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Hybrid Modeling Method for the Analysis of a Linear Flux Switching Machine

D.C.J. Krop, L. Encica, E.A. Lomonova
Electromechanics and Power Electronics Group
Department of Electrical Engineering
Eindhoven University of Technology
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
E-mail: d.c.j.krop@tue.nl

Abstract—A fast hybrid modeling method is proposed for the 2D analysis of a linear flux switching machine. A magnetic equivalent circuit in conjunction with the boundary element method is applied to the geometry to accurately determine the airgap permeances. The model can also take into account the non-linear behavior of the soft magnetic parts of the machine. The force response obtained by the hybrid method is compared to those obtained by 2D finite elements. The force response shows good agreement in terms of amplitude and shape.

Index Terms—linear machine, flux switching, boundary element method, magnetic equivalent circuit.

I. INTRODUCTION

For the analysis or design of machines comprised of non-linear soft-magnetic material with a complex geometrical airgap shape, usually finite element (FE) method and magnetic equivalent circuit (MEC) modeling are applied, because they can take saturation effects into account. FE and MEC are on the opposite sides of the speed-to-accuracy spectrum; MEC is fast but inaccurate whereas FE is accurate but slow. Furthermore, for complex geometrical shapes, the permeances in the MEC are difficult to determine and often require a priori knowledge of the flux distribution. Especially, the calculation of the dominant airgap permeances can be troublesome. To improve the MEC a hybrid modeling technique is proposed that enables the airgap permeances to be calculated fast and accurately by using the boundary element method (BEM). Moreover, no a priori knowledge of the flux flow in gap is required. The topology of the analyzed linear flux switching machine (LFSM) is shown in Fig. 1. It can be seen that both stator and translator have a slotted structure, which makes an accurate determination of airgap permeances difficult.

II. THE HYBRID MODELING METHOD

To calculate the airgap permeances accurately only a part of the complete airgap is considered. The local magnetostatic scalar potential field distribution due to a constant scalar potential distribution of 1 A-turns along the line segments of the contour that defines the shape of a tooth is calculated using BEM. Simultaneously, the scalar potentials of all other line segments are set to zero. The permeances between the tooth and all the line segments can be easily calculated once the value of the flux entering those line segments is known.

In [1] a similar approach was presented using FE instead of BEM. However, BEM is more suitable in terms of accuracy and computational effort due to its formulation, because it immediately gives the solution for flux distribution on the boundary of the airgap and no meshing of the internal domain is required [2].

III. RESULTS

The calculated cogging force of the LFSM including end effects compared to 2D FE is shown in Fig. 2. The maximum error in amplitude between the curves is 7%.

IV. CONCLUSION

A hybrid method that is a fast and accurate modeling technique for actuators comprised of soft magnetic materials has been proposed. The validity of the hybrid model for has been confirmed by 2D FE simulations. In the full paper the performance of the LFSM will be further elaborated on.

REFERENCES