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Abstract

In this paper, we analyze the end-to-end delay performance of a tandem queue-
ing system with mobile queues. Due to state-space explosion there is no hope for a
numerical exact analysis for the joint-queue length distribution. For this reason, we
present an analytical approximation that is based on queue length analysis. Through
extensive numerical validation, we find that the queue length approximation exhibits
excellent performance for light and moderate traffic load.

Keywords: Tandem queueing model; Mobile queues; Autonomous server; Perfor-
mance analysis; Delay analysis; Stability; Ad hoc networks.

AMS Classification: 60K25; 68M20.

1 Introduction

In this paper, we analyze the end-to-end delay performance of a customer in a tandem
queueing system with mobile queues. This is a typical scenario in the context of mobile
ad hoc networks where the wireless devices move autonomously [1, 2].

The network model of our interest is reminiscent of a multi-queue tandem model with
multiple alternating servers which move among the queues autonomously. In the literature,
it is usually assumed that the server can be controlled. Tandem models with controlled
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servers have been analyzed under various servicing strategies in the special case of a single
server (see, e.g., [3]). In a two-queue setting, [4] analyzes the model via boundary value
techniques. Unfortunately, the analysis along these lines for more than two queues appears
intractable. Time-limited service models with server control have also been studied in
the context of polling systems (see, e.g., [5, 6, 7]), where the server moves to another
queue when it becomes empty. In the mobility-driven model of our interest, the server is
autonomous and there is no possibility to control its movement.

As a primary step towards understanding the impact of mobility on the end-to-end delay,
we studied in [8] a model comprising a fixed source and destination queue, and a single
mobile queue operating as a relaying device. Modeling this network as a tandem of queues,
we performed an exact analysis for the joint queue length by extending the techniques
developed in [6] and [9]. Due to the state-space explosion, the computation time of the
joint queue length probabilities may grow large for certain model parameters. Therefore,
as a complementary tool, we presented an analytical approximation for the case that the
service requirements at each queue are exponential. In this paper, we are interested in the
model comprising multiple mobile queues. Unfortunately, the exact analysis carried out
in [8] is numerically intractable in this model due to the increase in the number of queues.
For this reason, we will focus on the approximation. As a generalization, we will allow the
distribution of the service requirements at the different queues to be general.

Our main interest is in the end-to-end delay in the network described above. The main
complexity in our model is the correlation between the queue lengths at different queues.
A numerically efficient approximation will be presented. The main idea is to relate the
sojourn time at a mobile queue and its queue length process at specific embedded epochs.
The queue length process at these embedded epochs is then analyzed in isolation as a
discrete-time queue with geometric batch arrivals. The key element is to approximate
the batch arrival process with correlated batch sizes with a batch process of independent
batch size. This approximation is referred to as queue length approximation.

Note that the arrivals to a queue are the departures of the upstream queue in the tandem.
Therefore, to derive the queue length of queue i, it is required to first analyze queue i− 1,
and so on. Thus, our approximation is based on an iterative scheme that derives the
delay at queue one first, then at queue two, and so on. A similar iterative scheme was
used recently in [10] for the analysis of multi-server tandem queues with finite buffers and
blocking.

The rest of the paper is organized as follows. Section 2 presents our model. The stability
condition of the system is derived in Section 3. In Section 4, we present exact results for
the sojourn time in the source queue. Section 5 proposes and analyzes the approximation
for the sojourn time in the mobile queue via queue lengths. In Section 6, we numerically
validate the accuracy of the approximations and present additional results which give
insight in the delay of the network. Section 7 concludes the paper. Proofs of our results
are given in Section 8.
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2 Model

We consider a tandem model consisting of N first-in-first-out (FIFO) systems with unlim-
ited queue, Qi, i = 1, . . . , N , in which customers arrive to Q1 and subsequently require
service at Q2, Q3,. . . , and QN−1 before reaching their destination at QN . The special
feature of the model is that Qi, i = 2, . . . , N − 1, alternates between positions Li−1 and
Li such that Qi−1’s server is available for service (i.e. customers at Qi−1 are served) only
when both Qi−1 and Qi are at Li−1 and Qi’s server is available for service when both Qi

and Qi+1 are at Li. The servers of Qi−1 and Qi are two different servers that cannot be
serving at the same time. Q1 and QN are fixed and they remain at location L1 and LN−1

respectively. QN is a sink and will not be included in our analysis.

Customers arrive to Q1 according to a Poisson process with arrival rate λ. The service
requirement Bi at Qi has general distribution Bi(t) with mean bi. We assume that the
service requirements are independent and identically distributed (iid) random variables
(rvs).

The queues Qi, i = 2, . . . , N − 1, move autonomously. Qi remains at location Li−1 (resp.
Li) a random duration Xi−1

i,n (resp. Xi
i,n) before it migrates to Li (resp. Li−1) during its

n-th visit, see Figure 1. After the n-th visit to Li−1, Qi incurs a switch-over time C+
i,n from

Li−1 to Li, and similarly a switch-over time C−
i,n after the n-th visit to Li. The location

of Qi is driven by an underlying continuous-time, discrete-state, process {Li(t) : t ≥ 0}
with state-space {−2,−1, 0, 1}. More precisely, Li(t) = 1 (Li(t) = 0) when Qi is at Li−1

(resp. Li) at time t, and Li(t) = −1 (Li(t) = −2) when Qi switches from Li−1 to Li (Li

to Li−1). Without loss of generality, let Li(0) = 1. We assume {Xi−1
i,n , Xi

i,n, C+
i,n, C−

i,n} are
iid and mutually independent, and also independent of the inter-arrival times and service
requirements. We further assume that Xi−1

i,n (Xi
i,n) is an iid sequence of exponentially

distributed rvs with rate α1
i (α0

i ).
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Figure 1: Possible locations of Qi and Qi+1.

We will refer to the time period during which the server is available for service at Qi as
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Qi service period. Due to the tandem structure, the Qi service period represents the Qi+1

arrival period, i.e., the period of time during which Qi+1 receives customers that completed
their service at Qi. The Qi service period occurs when the process

(
Li(t), Li+1(t)

)
is in

state (0, 1), see Case 4 in Figure 1. The duration of the n-th Qi service period, denoted by
Yi,n, is the minimum of the exponentially distributed rvs Xi

i,m and Xi
i+1,l, for some m and l.

That is, Yi,n is an iid sequence of exponentially distributed rvs with rate ξi := α0
i + α1

i+1.
Let Yi denote the generic rv of Yi,n. During a Qi service period, the server alternates
between service and idle states depending on whether or not customers are present at Qi.
When the server is serving a customer at the end of a server visit to Qi, service will be
preempted. At the beginning of the next visit to Qi, the service time will be re-sampled
according to Bi(·). This discipline is commonly referred to as preemptive-repeat-random.

In the following, given a continuous rv X, X(t) will denote its distribution function, X̃(s)
its Laplace-Stieltjes Transform (LST) and x its expectation. Similarly, given a discrete
rv Y , Y (n) will denote its distribution function, Ŷ (z) its probability generating function
(p.g.f.) and y its expectation.

The preemptive-repeat-random discipline induces that the amount of work generated by
a customer to Qi, referred to as generalized work, can be written as

Bg
i = B∗

i +
L∑

l=1

Y ∗
i,l, (1)

where B∗
i is the conditional Qi service time given that it is smaller than Qi service period, L

is the total number of interruptions during the customer’s service, and Y ∗
i,l is the conditional

Qi service period given that it is smaller than Qi service time. Since a Qi service period
is exponentially distributed, it is easily seen that the distribution of L is geometric with
parameter P[Bi > Yi] = 1− B̃i(ξi). Conditioning on L, the LST of generalized work is

B̃g
i (s) =

(s + ξi)B̃i(s + ξi)
s + ξiB̃i(s + ξi)

, Re(s) ≥ 0, (2)

where Re(s) denotes the real part of s. In particular, its expectation reads

E
[
Bg

i

]
=

1− B̃i(ξi)
ξiB̃i(ξi)

. (3)

Let Ni(t) denote the number of customers in Qi, i = 1, . . . , N , at time t. Assume Ni(0) =
0, i = 1, . . . , N . Let Di denote the sojourn time of an arbitrary customer in Qi, i =
1, . . . , N − 1. In the following, we will study D̃i(s), the LST of the sojourn time in Qi,
i = 1, . . . , N − 1.

3 Stability

Stability is considered on a per-queue basis as service capacity cannot be exchanged be-
tween the queues. The system is stable if and only if all the queues in the system are
stable.

4



For an individual queue to be stable, we must have that the average work per unit time
brought by a customer to the queue, λE[Bg

i ], is strictly smaller than the average fraction
of time the queue server is available for service. In the following, we will derive the average
fraction of time the Qi server is available for service which corresponds to the probability
that the Qi server is available. At time t, the Qi server is available when both Qi and Qi+1

are at location Li, i.e., when
(
Li(t), Li+1(t)

)
= (0, 1). By a renewal reward argument, we

have that

P
(
Li(t) = k

)
=

α1−k
i

α1
i + α0

i + α1
i α

0
i (c

+
i + c−i )

, k = 0, 1, (4)

and since the mobility processes of Qi and Qi+1 are independent, we obtain that

P
((

Li(t), Li+1(t)
)

= (0, 1)
)

= P
(
Li(t) = 0

)
P
(
Li+1(t) = 1

)

=
i+1∏

l=i

αi+1−l
l

α1
l + α0

l + α1
l α

0
l (c

l−1,l
l + cl,l−1

l )
. (5)

Note that Q1, the source node, remains always at location L1, i.e., L1(t) = 0, t ≥ 0. This
can be included in (5) by letting α1

1 → ∞ and α0
1 = 0. Moreover, since QN remains at

location LN , we let α1
N = 0 and α0

N →∞, so that (5) is valid for i = 1, . . . , N .

Stability condition: Qi is stable iff

ρi :=
λE

[
Bg

i

]

P
((

Li(t), Li+1(t)
)

= (0, 1)
)

= λ
1− B̃i(ξi)
ξiB̃i(ξi)

i+1∏

l=i

α1
l + α0

l + α1
l α

0
l (c

l−1,l
l + cl,l−1

l )

αi+1−l
l

< 1, (6)

where ρi is referred to as the generalized load at Qi.

Notice that under stability the arrival rates to Qi+1 and Qi are equal.

4 Exact analysis of queue one

The server visit process is autonomous and the service is according to the preemptive-
repeat-random discipline. It is then easily seen that Q1 in isolation is an M/G/1 queue
with on-off server with arrival rate λ, mean service time b1, exponential on-period X1

2 with
rate α1

2, and off-period Roff equal to the switch-over times plus the Q2 sojourn time at L2,
i.e., Roff = C1,2

2 + C2,1
2 + X2

2 . By a renewal reward argument, Pon, the probability that
the server is on, satisfies Pon = P

(
L2(t) = 1

)
which is given in (4), and Poff := 1− Pon.

The M/G/1 queue with on-off server has extensively been studied in the literature (see,
e.g., [11, 12]). Let us state here only the results that are relevant for our analysis. The LST
of the sojourn time of a customer is denoted by D̃1(s) and follows from a decomposition
argument [12]

D̃1(s) = W̃1(s)B̃
eff
1 (s) , (7)
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where W̃1(s) and B̃eff
1 (s) denote the LST of the waiting time of a customer (until it

is taken into service for the first time) and the effective service time (including possible
service interruptions), respectively. Note that Beff

1 includes the service interruption time
and is therefore not equal to Bg

1 . The LSTs W̃1(s) and B̃eff
1 (s) are given by [8]

W̃1(s) = W̃M/G/1(s)(Pon + Poff R̃off
e (s)

)
, (8)

B̃eff
1 (s) =

(α1
2 + s)(α0

2 + s) · B̃1(α1
2 + s)

(α1
2 + s)(α0

2 + s)− α1
2α

0
2(1− B̃1(α1

2 + s))C̃1,2
2 (s)C̃2,1

2 (s)
, (9)

where Re(s) ≥ 0, R̃off
e (s) denotes the LST of the residual time of an off-period, and

W̃M/G/1(s) is the LST of the waiting time in the corresponding M/G/1 queue with service
time with LST B̃eff

1 (s).

It follows that N̂1(z), the p.g.f. of the Q1 queue length, can be expressed as function of
D̃1(s), using the so-called functional form of Little’s law, as follows (see, e.g., [13])

N̂1(z) = D̃1

(
λ(1− z)

)
, |z| ≤ 1. (10)

Let us denote by N̂v
1 (z) the p.g.f. of Q1 queue length at the start time of its service

period. It can then be shown by using Eq. (10), the PASTA property and conditioning on
the position of the server, that

N̂v
1 (z) = W̃M/G/1

(
λ(1− z)

) · B̃eff
1

(
λ(1− z)

) · R̃off
(
λ(1− z)

)
. (11)

Moreover, let K2,n denote the total number of arrivals to Q2 during its n-th arrival period.
Since in our tandem model two successive queues cannot be on service at the same time,
the results derived for the p.g.f. of the joint queue length in a time-limited polling model
in [14] can be used to find that

K̂2,n(z) =
1

1− zB̃1(α1
2)

[
1− B̃1(α1

2) +
α1

2B̃1(α1
2)(1− z)

α1
2 + λ

(
1− µ(α1

2, z)
)N̂v

1

(
µ(α1

2, z)
)]

, (12)

where µ(α1
2, z) is the smallest root of x = zB̃1

(
α1

2 + λ(1− x)
)

with |µ(α1
2, z)| < 1. K̂2,n(z)

will be required later in the approximative analysis for Q2. In the following, we will study
each mobile queue in isolation.

5 Sojourn time approximation via queue length

In this section, we present an approximation for the LST of the sojourn time of a customer
in Qi, denoted by D̃i(s), i = 2, . . . , N−1, via queue lengths. We refer to this approximation
as the queue length approximation. We consider the queue length process of Qi when
(Li(t), Li+1(t)) = (0, 1), i.e., during a Qi service period. It turns out that this queue length
process corresponds to the waiting time in a Geo/G/1 discrete-time queue with geometric
inter-arrival time distribution and general service requirement distribution. The delay Di

follows from adding the total time a customer spends in service to the latter waiting time.
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5.1 Queue length of Qi

Consider the queue length process of Qi only during its service periods. This is done by
removing the time intervals where the Qi server is not present, i.e., during Qi off-periods.
This new process can be seen as the queue length in a batch arrival queue with inter-arrival
times distributed as Qi service period. Let yn, n = 0, 1, . . ., denote the ending times of
Qi service periods. Let N e

i,n denote the queue length of Qi at epoch yn. Assume that
the queue length is left-continuous, i.e., arriving batches are not counted as being in the
system until (just) after they arrive.

Let Mn denote the total number of Qi arrival periods that occur between the n-th and
(n + 1)-st Qi service period. Note that due to the tandem structure in our model it is
clear that the Qi arrival period represents the Qi−1 service period. Let Km

i,n denote the
total number of arrivals to Qi during the m-th Qi arrival period for m = 1, . . . , Mn. Thus,
between the end of the n-th and (n + 1)-st service period

∑Mn
m=1 Km

i,n customers arrive
to Qi. So that, in our interpretation of the batch arrival queue with off-service periods
removed, at time yn a batch of size

∑Mn
m=1 Km

i,n arrives to the queue. Note that it is possible
that Mn = 0, in this case the batch size is simply equal to zero. Let Ei,n+1 denote the
number of customers that complete their service in Qi during the (n+1)-st service period
in the case where at the beginning of this period the Qi queue length is infinite. A sample
path of the evolution of Ni(t) as a function of t is depicted in Figure 2. It is then easily
seen that during the n-th cycle, [yn, yn+1), N e

i,n+1 can be written as function of N e
i,n as

follows

K i
n,1 Ne

i,n+1Ne
i,n

Ei,n+1

(n+1)−th
Qi

1−th Qi−1n−th Q i

yn
yn+1

M −th Q    i−1

Ei,n

serviceservice service

t

service

       Q   lengthi

K i
n,Mn

n

n−th cycle

Figure 2: Sample path of the Qi queue length.

N e
i,n+1 =

(
N e

i,n +
Mn∑

m=1

Km
i,n −Ei,n+1

)+
, n ≥ 0. (13)

where (·)+ := max(0, ·). Recall that Yi,n+1 denotes the duration of the (n + 1)-st Qi

service period that is an exponentially distributed rv with rate ξi = α0
i + α1

i+1. Recall
that the customers service requirements are iid rvs with general distribution. It follows
that Ei,n, n = 0, 1, . . . , are iid rvs which are geometrically distributed with parameter
νi := P(Bi < Yi,n+1) = B̃i(ξi). Thus, the probability of the event {Ei,n+1 = l} reads

P(Ei,n+1 = l) = (1− νi)νl
i , l = 0, 1, . . . . (14)

Note that Ei,n+1 is independent of Km
i,n and Mn, Km

i,n depends on the index m, however,
it is independent of the rv Mn, and that Km

i,n depends on the queue length process of Qi−1

during the time interval between the n-th and (n + 1)-st Qi service periods. Moreover,
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the queue length of Qi−1 does not form a Markov chain. For this reason, the rvs Km
i,n,

n = 0, 1, . . . , m = 1, . . . , Mn, are not independent rvs. In addition, Ei,n and Km
i,n are not

independent. For the sake of model tractability, we make the following approximating
assumption:

Assumption A: Km
i,n, n = 0, 1, . . . , m = 1, . . . ,Mn are iid and also independent of

{Ei,l : l = 0, 1, . . . , n}.

By Assumption A, Eq. (13) represents the waiting time of an arrival in a discrete-
time single-server queue with inter-arrival times Ei,n+1 and service requirements Fi,n :=∑Mn

m=1 Km
i,n. The main advantage in this model is that the distribution of Ei,n+1 is geomet-

ric. It is known that N̂ e
i (z), the steady-state p.g.f. of N e

i,n, is given by (see [15, Corollary
4.3] with U and B equal in distribution and γ = p = νi)

N̂ e
i (z) =

(1− νi − νiE[Fi])(z − 1)
z − 1 + νi(1− zF̂i(z))

, |z| ≤ 1, (15)

where F̂i(z) is the steady-state p.g.f. of Fi,n. Since Km
i,n is independent of Mn, the

p.g.f. F̂i(z) can be written as follows

F̂i(z) = E
[
E

[
zKi,n

]Mn
]

= M̂n

(
K̂i,n(z)

)
. (16)

We emphasize that K̂i,n(z) follows from the analysis of Qi−1. For this reason, to complete
the analysis of Qi, in Section 5.4 we will derive K̂i+1,n(z).

To derive the LST of the sojourn time at Qi we need N̂ c
i (z), the p.g.f. of Qi queue length

seen by an arbitrary customer, and M̂n(z), which will be determined in Section 5.2.

Lemma 1. The p.g.f. of the queue length of Qi seen by an arbitrary arriving customer is
given by

N̂ c
i (z) = N̂ e

i (z)
z
(
1− F̂i(z)

)

(1− z)E[Fi]
. (17)

Proof. Let N̂ j
i (z) denote the p.g.f. of Qi queue length seen by the j-th customer within a

batch upon arrival including himself. Since the size of the batches is independent of the
queue length of Qi present upon arrival, N̂ j

i (z) reads,

N̂ j
i (z) = zN̂ j−1

i (z), j = 1, 2, . . . , (18)

with N̂0
i (z) = N̂ e

i (z). The probability, P(J = j), that a customer is the j-th customer
within the batch is equal to the fraction of customers who are j-th arrival in their own
batch, which gives

P(J = j) =
P(Fi ≥ j)
E[Fi]

. (19)

Removing the condition on the customer position in a batch in (18) and using (19) gives
the desired result. ¤
As can be seen N̂ c

i (z) is function of F̂i(z) and eventually of M̂n(z). Now, we derive M̂n(z).
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5.2 P.g.f. of Mn

The rv Mn only depends on the mobility process of Qi−1, Qi, and Qi+1 and can be fully
represented as the number of visits to a state in a Markov chain. For clarity of presentation,
we will restrict ourselves to the simple case where the switch-over times are equal to zero.
We emphasize that similar analysis can be done when the switch-over time distribution is
phase-type for which the cardinality of the state space is enlarged, see the discussion in
Section 7.

The p.g.f. of Mn can be written as follows:

M̂n(z) = P(Mn = 0) +
(
1− P(Mn = 0)

)
M̂+

n (z), (20)

where M+
n is Mn given that it is strictly positive. In the following lemmas, we will first

derive M̂+
n (z) and next P(Mn = 0).

Lemma 2. The p.g.f. of M+
n is

M̂+
n (z) = −bz(A + zB)−1u, |z| ≤ 1, (21)

where

A =




A11 0 0 α0
i−1 0 0

α1
i A22 α0

i+1 0 α0
i−1 0

0 α1
i+1 A33 0 0 α0

i−1

α1
i−1 0 0 A44 α0

i 0
0 0 0 α1

i A55 α0
i+1

0 0 0 0 α1
i+1 A66




,

B =




0 α0
i 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α1

i−1 0 0 0 0
0 0 α1

i−1 0 0 0




, u =




α0
i+1

0
α1

i

α0
i+1

0
α1

i




,

and where the diagonal entries of A are such that (A + B)e + u = 0. The vector b is the
row vector of order six and of non-zero entries

b(2) = h(1), b(3) = 1− h(1),

h = −(α1
i−1α

1
i+1, 0, α0

i−1α
1
i+1, 0, 0, α0

i−1α
0
i )

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
·H−1 ·V,

H =




H11 α0
i+1 α0

i−1 0 0 0
α1

i+1 H22 0 α0
i−1 0 0

α1
i−1 0 H33 α0

i+1 α0
i 0

0 α1
i−1 α1

i+1 H44 0 α0
i

0 0 α1
i 0 H55 α0

i+1

0 0 0 α1
i α1

i+1 H66




,V =




α0
i 0

0 α0
i

0 0
0 0

α1
i−1 0
0 α1

i−1




.

The diagonal entries of H are such that He + V × (1, 1)T = 0, where e is the column
vector of order six and with all entries equal to 1, and xT is the transpose of vector x.
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Proof: See Appendix 8.1.

Lemma 3. The probability that no Qi arrival period occurs during the n-th cycle reads

P(Mn = 0) = −g · F−1 · w, (22)

where

g =
1

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
(α1

i−1α
1
i+1, α

0
i−1α

1
i+1, 0, α0

i−1α
0
i ),

F =




F11 α0
i−1 0 0

α1
i−1 F22 α0

i 0
0 α1

i F33 α0
i+1

0 0 α1
i+1 F44


 , w =




α0
i+1

α0
i+1

0
α1

i


 .

The diagonal entries of F are such that

Fe + w + (α0
i , 0, α1

i−1, α
1
i−1)

T = 0.

Proof: See Appendix 8.2.

5.3 Sojourn time in Qi

Recall that Di, the sojourn time in Qi, consists of two parts: the time required to serve
N c

i customers, and the time a customer is in Qi but Qi is not served. Let Beff
i denote

the effective service time at Qi, i = 2, . . . , N − 1, that starts when a customer receives
the service for the first time and ends when the customer departs from Qi. Clearly, Beff

i

includes the time when the Qi service is interrupted. Let L denote the total number of
interruptions during the service of a customer. It is easily seen that Beff

i can be written
as

Beff
i = B∗

i +
L∑

l=1

(
Y ∗

i,l + Ξi,l

)
, (23)

where B∗
i is the conditional Bi given that it is smaller than Yi, the exponential rv with

rate ξi = α0
i + α1

i+1, Y ∗
i,l is the conditional Yi given that it is smaller than Bi, and Ξi,l

is the duration of the service interruption in Qi. Let Ξ̃i(s) denote the steady-state LST
of Ξi,l. Since we are considering the preemptive-repeat discipline, the distribution of L is
geometric with parameter P[Bi > Yi] = 1− B̃i(ξi). Conditioning on L, we find the LST of
Beff

i that reads

B̃eff
i (s) =

(ξi + s) · B̃i(ξi + s)
(ξi + s)− ξi(1− B̃i(ξi + s))Ξ̃i(s)

, i = 2, . . . , N − 1, Re(s) ≥ 0. (24)

An arriving customer to Qi joins the queue when Qi is not served. Therefore, the customer
has to wait for the server to return to Qi in order that her service starts. This occurs
when Qi and Qi+1 are both at location Li. Let Ξ∗i denote the first time after t that the
server returns to Qi given that an arrival joins Qi at t. In the following lemmas, we give
the LST of Ξi and Ξ∗i .
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Lemma 4. The LST of Ξi is

Ξ̃i(s) = y(sI−A−B)−1u, , Re(s) ≥ 0, (25)

where

y =
1

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
(α1

i−1α
0
i+1, 0, α1

i−1α
0
i , α

0
i−1α

1
i+1, 0, α0

i−1α
0
i ),

(26)

A, B, and u are given in Lemma 2.

Proof: See Appendix 8.3.

Lemma 5. The LST of Ξ∗i is

Ξ̃∗i (s) = y∗(sI−A−B)−1u, Re(s) ≥ 0, (27)

where
y∗ =

1
α0

i+1 + α1
i+1

(0, α1
i+1, α

0
i+1, 0, 0, 0). (28)

Proof: See Appendix 8.4.

We are now ready to formulate our main result for the sojourn time in Qi, the queue
length approximation.

Theorem 1. (Sojourn time via queue length)
Under Assumption A, the sojourn time in Qi is

Di = Ξ∗i +
Nc

i∑

i=1

Beff
i . (29)

The LST of Di reads

D̃i(s) = Ξ̃∗i (s)N̂
c
i

(
B̃eff

i (s)
)
, Re(s) ≥ 0. (30)

Proof: Eq. (29) is due to the fact that the queue length of Qi seen by an arriving customer
is N c

i (including himself) and the customer in service has to wait for Ξ∗i before that the
service restarts in Qi.

Since N c
i depends on the history of the Markov chain

(
Li−1(t), Li(t), Li+1(t)

)
and Beff

i

depends on the future of
(
Li−1(t), Li(t), Li+1(t)

)
the rvs N c

i and Beff
i are independent.

Moreover, Beff
i is independent of Ξ∗i , e.g., see (23), and N c

i is independent Ξ∗i . All these
independencies together readily give (30). ¤

Remark 1. For the exponential service times, we note that in [8] we proposed a different
approximation of the sojourn time at Qi via the workload analysis in the queue. We
emphasize that the queue length approximation proposed in this paper is much easier to
derive and to extend to the general service times distribution.
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5.4 P.g.f. of Ki+1,n

In our tandem model, we note that the arrivals to a queue are the departures of the
upstream queue. Therefore, to derive the queue length of Qi, it is required to first an-
alyze Qi−1, and so on. For this reason, we emphasize that in our iterative scheme the
p.g.f. K̂i,n(z) should be computed in the analysis of Qi−1. Therefore, to close the iteration
loop of Qi, we will derive in the following K̂i+1,n(z). The rv Ki+1,n represents the total
number of arrivals to Qi+1 during a Qi service period. Let Nv

i denote the queue length
of Qi just after the beginning of a Qi service period. Therefore, Nv

i is the sum of N e
i ,

the queue length of Qi seen by arriving batch, and Fi, the batch size. Note that during a
Qi server period, there are no arrivals to Qi and the distribution of the duration of that
server period is Yi, an exponential rv with rate ξi = α0

i + α1
i+1. Consequently, using (12)

with λ → 0 and replacing α1
2 by ξi and B̃1(s) by B̃i(s) gives

K̂i+1,n(z) =
1

1− B̃i(ξi)z

[
B̃i(ξi)(1− z)N̂v

i

(
B̃i(ξi)z

)
+ 1− B̃i(ξi)

]
, (31)

where N̂v
i (z) := N̂ e

i (z)F̂i(z), which are given in (15) and (16).

6 Numerical results

We consider a tandem network of N queues including the source and the destination queue.
The mean service time at Qi is equal to bi = b for i = 1, . . . , N . Recall that Qi remains
at locations Li−1 and Li an exponentially distributed period of time with rate α1

i and α0
i .

We will consider that case where α0
i = α1

i = αi. The queues Q1 and QN remain always at
locations L1 and LN , respectively. We assume that the switch-over times incurred when
queues alternate between locations are equal to zero. Our objectives are to validate the
approximations and to give insights into the sojourn time behavior as a function of the
system parameters.

To validate our approximation we will compare its results with those of the simulation. The
simulation of the above tandem model scenario was implemented in the C++ programming
language. To generate the random variables we used the pseudo-random generator package
of C++. We note that a simulation result consists of an average over multiple runs with
different seeds. The number of runs considered is high enough in order to guarantee a
small 95% confidence interval.

Let E[Dql
i ] denote the mean sojourn time in Qi using the queue length approximation given

in (30). Let E[Dsim
i ] denote the mean sojourn time in Qi using simulation for the tandem

network. Moreover, let us refer to the relative difference between the mean sojourn time
at Qi using the approximation and simulation as follows.

τ ql
i (%) := 100×

∣∣∣1− E[Dql
i ]

E[Dsim
i ]

∣∣∣.

In the sequel, we will consider four different service time distributions: the deterministic
distribution, the Erlang-2 distribution, the exponential distribution, and the two-phase
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hyper-exponential distribution. The two-phase hyper-exponential distribution is uniquely
determined by its mean value b, and by the mean m1 and probability p1 of the first phase.

6.1 Accuracy of queue length approximation vs. load

In this section, we study the accuracy of the mean sojourn time in Qi using the queue
length approximation by comparing it to the simulation results as function of the queue
load ρi. This will be done for both the symmetric case when αi = α for i = 2, . . . , N − 1,
and asymmetric case when αi 6= αj for some i and j.

Symmetric case: we consider a tandem network of six queues, i.e., N = 6, with mean
service time b = 1 and αi = 0.05, i = 2, . . . , 5. Note that in the case of exponential
services the load at the queues satisfies ρ2 = ρ3 = ρ4 = 2ρ5 = ρ. However, in the case of
deterministic or hyper-exponential the load at the queues satisfies ρ2 = ρ3 = ρ4 = ρ ≈ 2ρ5,
see Eq. (6). Figures 3 and 4 show the relative difference as function of ρ for exponential,
deterministic, and hyper-exponential service distribution. Observe that τ ql

i is smaller
than 20% for ρ ≤ 0.4 and for all service distributions. For this reason, the queue length
approximation is accurate in the cases of light and moderate load at Qi. Moreover, we
note that the accuracy of the approximation is almost the same for the considered service
distributions.
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Figure 3: Relative difference between the queue length approximation and the simulation
as function of ρ for α = 0.05 and b = 1 with: (a) exponential service requirement, (b)
deterministic service requirement.

Asymmetric case: we consider a tandem network with N = 7 queues including source
and destination. Our objective is to show that the approximated and simulated mean
sojourn time follow the same pattern for i = 2, . . . , 6. We consider two different settings
for {α2, . . . , α5}: the allocation set A = {0.05, 0.025, 0.1, 0.0375, 0.05} and the set B =
{0.05, 0.1, 0.15, 0.2, 0.05}. Figure 5 displays the mean sojourn time at Qi as function
of αi for exponential service requirement. Observe that the approximation predicts the
behavior of the simulation very well. Moreover, the queues with the highest and lowest
mean sojourn time are the same in the simulation and approximation. These observations
also hold for the hyper-exponential service distribution as shown in Figure 6.
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Figure 4: Relative difference between the approximation and the simulation as function
of ρ for α = 0.05 and b = 1 with: (a) hyper-exponential service time with p1 = 0.6,
m1 = 0.1, and SCV= 3.43, (b) hyper-exponential service time with p1 = 0.8, m1 = 0.1,
and SCV= 7.48.
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Figure 5: Mean sojourn time at Qi using queue length approximation and simulation for
λ = 0.05 and b = 1 with: (a) exponential service time, (b) deterministic service time.
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Figure 6: Mean sojourn time at Qi using queue length approximation and simulation
for λ = 0.05 and b = 1 with: (a) hyper-exponential service time with p1 = 0.6 and
m1 = 0.1, and SCV= 3.43, (b) hyper-exponential service time with p1 = 0.8, m1 = 0.1,
and SCV= 7.48.
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6.2 Mean approximate sojourn time vs. service times distribution

Let us check the behavior of the queue-length approximation as function of the service
times distribution. We consider the symmetric scenario of a tandem network of six queues,
i.e., N = 6, with mean service requirement b = 1 and αi = 0.05, i = 2, . . . , 5. Figure 7
displays the expected sojourn time at Q3 and Q4 using the approximation as function of
the square coefficient of variation (SCV) of the service times. For λ = 0.05 and λ = 0.1
respectively, observe that the accuracy of the queue length approximation is almost insen-
sitive of the SCV of the service times. Furthermore, for all parameter values considered
the approximated mean delay in Qi gives an upper bound of the simulated mean delay in
Qi. This observation is in support of the result in [16] which proves that in the correlated
M/G/1 queue a positive correlation between the service time and the last inter-arrival
time reduces the mean sojourn time. We should emphasize that in our model Km

i,n and
the last inter-arrival time are positively correlated, i.e., an increase of the last inter-arrival
time induces stochastically an increase of Km

i,n.
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Figure 7: Expected sojourn time at Q3 and Q4 as function of the SCV of the service times
for α = 0.05 and λ = 0.05.

6.3 Squared coefficient of variation of sojourn time in Qi

Next, we compare the squared coefficient of variation σi of the sojourn time at Qi,
σi := Var[Di]/E[Di]2, following from the queue length approximations with the simu-
lation denoted as σql

i and σsim
i , respectively. Tables 1, 2, and 3 show σql

i and σsim
i , and

also the second moments E
[
(Dql

i )2
]

and E
[
(Dsim

i )2
]

for the exponential, the deterministic,
and the hyper-exponential service times distribution. Observe that the squared coefficient
of variation of the approximations are accurate.

6.4 Impact of αi on mean sojourn time

Our objective is to show the impact of αi on the mean sojourn time at Qi as function
of the service time distribution. We consider the symmetric case where αi = α. Table 4
shows the mean sojourn time at Qi as function of α in the case of exponential service
times. Note that for λ = 0.075 and b = 1, the load ρi, i = 2, . . . , 5, is equal to 0.3 and
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Q2 Q3 Q4 Q5 Q6

αi 0.05 0.1 0.15 0.2 0.05
σql

i 0.785 0.811 0.830 1.084 0.791
σsim

i 0.778 0.782 0.795 1.099 0.801
E

[
(Dql

i )2
]

3328.0 1796.4 1147.9 2080.9 1453.0
E

[
(Dsim

i )2
]

3094.0 1449.8 933.9 1891.0 1318.8
αi 0.05 0.025 0.1 0.0375 0.05
σql

i 0.998 0.761 0.981 0.815 0.761
σsim

i 1.022 0.741 0.985 0.795 0.756
E

[
(Dql

i )2
]

8726.9 11466.6 6000.3 10163.8 1875.6
E

[
(Dsim

i )2
]

8338.7 9098.3 4780.2 8266.8 1643.7

Table 1: Coefficient of variation and second moment of the sojourn time at Qi using queue
length and workload approximation and simulation for: λ = 0.05, exponential service with
b = 1, for the αi allocation set A (Top) and B (bottom).

Q2 Q3 Q4 Q5 Q6

αi 0.05 0.1 0.15 0.2 0.05
σql

i 0.775 0.799 0.817 1.052 0.780
σsim

i 0.767 0.763 0.769 1.060 0.791
E

[
(Dql

i )2
]

3542.7 2112.5 1465.4 2322.6 1449.5
E

[
(Dsim

i )2
]

3254.1 1650.2 1155.2 2102.5 1324.8
αi 0.05 0.025 0.1 0.0375 0.05
σql

i 0.99 0.755 0.968 0.809 0.748
σsim

i 1.012 0.734 0.964 0.787 0.742
E

[
(Dql

i )2
]

8941.5 12182.8 6441.7 10513.9 1882.0
E

[
(Dsim

i )2
]

8511.1 9513.6 5075.6 8650.5 1650.1

Table 2: Coefficient of variation and second moment of the sojourn time at Qi using queue
length and workload approximation and simulation for: λ = 0.05, deterministic service
with b = 1, for the αi allocation set A (Top) and B (bottom).
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Q2 Q3 Q4 Q5 Q6

αi 0.05 0.1 0.15 0.2 0.05
σql

i 0.805 0.833 0.854 1.142 0.816
σsim

i 0.897 0.903 0.912 1.081 0.907
E

[
(Dql

i )2
]

2958.7 1368.5 793.9 1729.5 1456.0
E

[
(Dsim

i )2
]

2805.4 1162.1 675.9 1582.4 1306.1
αi 0.05 0.025 0.1 0.0375 0.05
σql

i 1.015 0.773 1.010 0.826 0.789
σsim

i 1.018 0.871 1.011 0.899 0.885
E

[
(Dql

i )2
]

8288.3 10180.8 5214.7 9449.5 1857.9
E

[
(Dsim

i )2
]

7956.4 8321.6 4241.5 7687.5 1620.7

Table 3: Coefficient of variation and second moment of the sojourn time at Qi using
queue length and workload approximation and simulation for: λ = 0.05, hyper-exponential
service with b = 1, p1 = 0.6, and m1 = 0.1, for the αi allocation set A (Top) and B
(bottom).

ρ6 = 0.15. Observe that the mean sojourn time decreases at Qi with α. Moreover, the
mean sojourn time at Qi, i = 2, . . . , 5, converges to the mean sojourn time in an M/M/1
queue with load 0.3 and arrival rate λ = 0.075 that is equal to 5.71. A similar result holds
for Q6 which gives that its limiting mean sojourn time is equal to 2.38. Table 5 displays
the mean sojourn time at Qi as function of α in the case of deterministic service. The
mean sojourn time of the deterministic service as function of α has an optimum value for
α. Additional experiments show that this optimum is around 0.4. The hyper-exponential
service gives similar results as the case of exponential service. That is, the mean sojourn
time in Qi, i = 2, . . . , 5, is decreasing with α and it converges to a limit value, which is
approximately equal to the mean sojourn time in an M/M/1 queue with arrival rate λ and
load ρi. For the deterministic service, we note that the optimal value of α is sensitive to
the value of λ and b in such a way that the higher the load at the queue the smaller the
optimal value of α.

α ρ2 Q2 Q3 Q4 Q5 Q6

0.05 0.3 60.55 71.64 76.54 78.14 35.62
0.1 0.3 33.23 38.04 41.43 42.42 19.01
0.2 0.3 19.55 22.25 23.36 23.75 10.75
0.4 0.3 12.69 13.96 14.39 14.52 6.34
0.8 0.3 9.24 9.82 9.96 10.00 4.29
50 0.3 5.77 5.78 5.78 5.79 2.38

Table 4: Mean sojourn time at Qi using the queue length approximation as function of α
for: λ = 0.075, exponential service with b = 1.
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α ρ2 Q2 Q3 Q4 Q5 Q6

0.05 0.315 62.49 74.37 23.52 20.95 22.99
0.1 0.33 35.77 42.21 44.94 45.91 19.34
0.2 0.37 23.52 27.10 28.31 28.67 11.03
0.4 0.46 20.98 23.30 23.79 23.90 7.24
0.8 0.74 49.57 53.01 53.37 53.58 6.26

Table 5: Mean sojourn time at Qi using the queue length approximation as function of α
for: λ = 0.075, deterministic service with b = 1.

α ρ2 Q2 Q3 Q4 Q5 Q6

0.05 0.27 56.83 66.39 70.96 72.58 35.00
0.1 0.24 29.29 33.58 35.87 36.89 18.31
0.2 0.21 15.33 17.05 17.97 18.39 9.64
0.4 0.16 8.19 8.82 9.15 9.31 5.2
0.8 0.124 4.5 4.73 4.84 4.89 2.88
50 0.05 0.74 0.74 0.75 0.75 0.38

Table 6: Mean sojourn time at Qi using the queue length approximation as function of α
for: λ = 0.075, hyper-exponential service with b = 1, p1 = 0.6, and m1 = 0.1.

6.5 Large tandem model

In Table 7, we show the mean sojourn time at Qi and the relative difference τi between
approximation and simulation as function of N for λ = 0.1, exponential service with
b = 0.5, and α = 0.05. We note that up to a certain threshold the relative difference is
increasing and it starts to decrease slightly after that value. Remark that the sojourn time
approximation at QN−1 is more accurate since it is next to the destination queue.

7 Conclusion and possible generalization

In this paper, we have addressed the performance of a tandem queueing system with mobile
queues. We have proposed an analytical approximation for the LST of the delay in Qi.
The approximation is called queue length approximation. Through extensive numerical
validation we have shown that the queue length approximation gives nice results for light
and moderate load in the case of general service times distribution.

For the sake of clarity, we restricted ourselves in Section 5.2 to the case where the switch-
over times are zero. As a generalization, we consider here the case of non-zero switch-
over times. In particular, we assume that when Qi migrates from location Li to Li−1 it
requires an exponentially distributed switch-over time with mean c−i . Similarly, when Qi

migrates from location Li−1 to Li it requires an exponentially distributed switch-over time
with mean c+

i . The state space of the Markov chain
(
Li−1(t), Li(t), Li+1(t)

)
is equal to

Ω = {−2,−1, 0, 1}3. Following the footprints of Section 5.2, one can easily show that the
M̂n(z) has exactly the same form as depicted in Lemmas 2 and 3. The matrices A and
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Q2 Q3 Q4 Q5 Q6 Q7 Q8

N = 5 E[Dql
i ] 48.94 55.94 29.51

N = 5 τ ql
i 3.6 10.3 7.5

N = 6 E[Dql
i ] 48.94 55.94 60.32 30.53

N = 6 τ ql
i 3.6 10.3 13.3 8.6

N = 7 E[Dql
i ] 48.94 55.94 60.32 62.63 31.02

N = 7 τ ql
i 3.6 10.3 13.3 14.5 8.6

N = 8 E[Dql
i ] 48.94 55.94 60.32 62.63 63.73 31.24

N = 8 τ ql
i 3.6 10.3 13.3 14.6 14.2 8

N = 9 E[Dql
i ] 48.94 55.94 60.32 62.63 63.73 64.24 31.34

N = 9 τ ql
i 3.6 10.3 13.3 14.6 14.2 13.6 7.2

Table 7: Mean sojourn time at Qi and relative difference of queue length approximation
as function of the tandem network size N for: λ = 0.1, exponential service with b = 0.5,
and α = 0.05.

B in this case have a much larger dimension. More precisely, A (resp. B and H ) is a
60-by-60 matrix.

In this paper we restricted ourselves to the Tandem model case. The case of a general
network of queues with fork and join traffic and with mobile queues remains an open
problem to be addressed in the future. Moreover, we considered the case where there is
a single mobile node moving between two consecutive locations. The scenario of multiple
mobile nodes moving between two consecutive locations is important to address some
applications such as in vehicular networks where for example the mobile nodes represent
the busses moving between to stations.
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8 Appendix: Proofs

In this section, we will use the theory of the finite-state continuous-time absorbing Markov
chains to compute M̂n(z). Lemma 6 summarizes some known results, e.g. see [17], of this
theory that will be used afterwards.

Lemma 6. Consider a finite-state, continuous-time, Markov chain {MC(t), t ≥ 0}, with
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state space ζ = {1, · · · ,m + n} and with infinitesimal generator matrix, G, of the form

G =
(

U V
0m 0n

)
,

where U is an m-by-m matrix, V is an m-by-n matrix, 0m is an n-by-m matrix with entries
equal to 0, 0n is an n-by-n matrix with entries equal to 0. The states {m + 1, · · · , m + n}
are absorbing. Then,

(a) the states {1, · · · ,m} are all transient if and only if U is a non-singular matrix.

(b) the probability distribution, F (.), of the time until absorption in one of the absorb-
ing states {m + 1, · · · ,m + n}, given that MC(0) = i, i = 1, . . . ,m, reads

F (t) = 1− αiexp(Ut)e, t ≥ 0, (32)

where αi is the m-dimensional row vector with entries equal to 0 except the i-th one that
is equal to 1, e is the m-dimensional column vector with entries all equal to 1, and where

exp(Ut) :=
∞∑

i=0

(Ut)i

i!
,

with (Ut)0 = Im the m-by-m identity matrix. Similarly, the Laplace-Stieltjes Transform,
F̃ (s), of the time until absorption in one of the states {m + 1, · · · ,m + n}, given that
MC(0) = i, i = 1, . . . , m, reads

F̃ (s) = αi(sIm −U)−1Ven, Re s ≥ 0, (33)

where en is the n-dimensional column vector with entries are all equal to 1.

(c) given that MC(0) = i, the expected amount of time spent in the transient state j
is equal to the (i,j)-entry of −U−1, i, j = 1, . . . , m.

(d) given that MC(0) = i, the probability that absorption occurs in state j is equal to
the (i,j)-entry of −U−1V, i = 1, . . . ,m and j = m + 1, . . . ,m + n.

8.1 Proof of Lemma 2

Recall that M+
n is equal to Mn given that Mn > 0, where Mn is the total number of Qi

arrival periods during the time interval that separates two consecutive Qi service periods.

Let W (t) =
(
Li−1(t), Li(t), Li+1(t),M(t)

)
denote the continuous-time Mar-kov chain with

discrete state-space {0, 1}3 × {1, 2, . . .}, where M(t) is the number of Qi arrival periods
until time t given that it is strictly positive. Assume that

(
Li−1(0), Li(0), Li+1(0)

)
is in

steady-state and that a Qi arrival period has just started at 0, i.e., time 0 is the first time
that

(
Li−1(0), Li(0), Li+1(0)

)
= (0, 1, ·) with

(
Li−1(0−), Li(0−)

) 6= (0, 1). Moreover, we
set M(0) = 1 and M(0−) = 0, and make the states (·, 0, 1, ·) of W (t) to be absorbing.
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Merging these absorbing states into one state, referred to as a, will not impact the dynamics
of W (t) before absorption. Since

(
Li−1(t), Li(t), Li+1(t)

)
is an irreducible Markov chain,

the probability of transition to state a is equal to one and thus the time until absorption,
Ta, is a proper rv. We will refer to the previous absorbing chain as AMC. Now writing
M+

n in terms of M(t) gives that M+
n = M(Ta). The probability distribution P(M+

n = m) is
the probability that the transition to a occurs from one of the states {(i, j, k,m) : i, j, k =
0, 1 and (j, k) 6= (0, 1)}.
We derive now M̂+

n (z), the p.g.f. of M+
n . Let us define a level l(m), m = 1, 2, . . ., to be

the transient states of AMC with M(t) = m and ordered as follows

l(m) :=
{
(0, 0, 0,m), (0, 1, 0,m), (0, 1, 1,m), (1, 0, 0,m), (1, 1, 0,m), (1, 1, 1,m)

}
,

Observe that there are in total six states in l(m). We order the infinite number of AMC
states as follows: l(1), l(2), . . ., and finally the absorbing state a. It is easily seen that the
generator matrix P of AMC can be written as

P =
(

Q R
0T 0

)
,

where Q represents the generator matrix of transitions between the transient states of
AMC, R represents the rate vector of transitions from the transient states to the absorbing
state a, 0T is the row vector with all entries equal to zero. Let u denote a column vector
that designates the transition rate vector from l(m) states to the state a. Therefore,
u = (α0

i+1, 0, α1
i , α

0
i+1, 0, α1

i )
T . Since u is independent of m, the vector RT = (uT , uT , . . .).

Note that on leaving l(m) the AMC either jumps to l(m + 1) or to a. For this reason, Q
is an infinite upper-bidiagonal block matrix of the following form

Q =




A B 0 · · · · · ·
0 A B 0 · · ·
...
. . . . . . . . . . . .


 , (34)

where, A is a 6-by-6 matrix that represents the transition rates between the states of l(m),
m = 1, 2, . . . , which reads

A =

0, 0, 0,m
0, 1, 0,m
0, 1, 1,m
1, 0, 0,m
1, 1, 0,m
1, 1, 1,m

0, 0, 0,m 0, 1, 0,m 0, 1, 1,m 1, 0, 0, m 1, 1, 0,m 1, 1, 1,m

A11 0 0 α0
i−1 0 0

α1
i A22 α0

i+1 0 α0
i−1 0

0 α1
i+1 A33 0 0 α0

i−1

α1
i−1 0 0 A44 α0

i 0
0 0 0 α1

i A55 α0
i+1

0 0 0 0 α1
i+1 A66

B is a 6-by-6 matrix that represents the transition rates from the states of l(m) to l(m+1),
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m = 1, 2, . . . , which reads

B =

0, 0, 0,m
0, 1, 0,m
0, 1, 1,m
1, 0, 0,m
1, 1, 0,m
1, 1, 1,m

0, 0, 0, n 0, 1, 0, n 0, 1, 1, n 1, 0, 0, n 1, 1, 0, n 1, 1, 1, n

0 α0
i 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α1

i−1 0 0 0 0
0 0 α1

i−1 0 0 0

where n = m + 1. The diagonal entries of A are such that (A + B)e + u = 0, where e is
the column vector of order six and with all entries equal to 1.

Next, we will derive P(M+
n = m) as function of the blocks of the inverse of Q. Since Q is an

upper-bidiagonal block matrix, it is easily verified that Q−1 is an upper-triangular block
matrix of blocks Ul,m =

( −A−1B
)m−lA−1 for l ≥ 1 and m ≥ l. Note that the matrix

A is invertible since it is a generator matrix of a transient chain. Moreover, −A−1B is
a sub-stochastic probability matrix whose entries give the probability of jumping to level
l(m+1) given that the AMC starts in l(m). For this reason, (−A−1B)m → 0 as m →∞.

From the theory of absorbing Markov chains, given that AMC starts in l(1) with prob-
ability distribution vector b, the probability that the absorption occurs from one of the
states of level l(m) is given by (see Lemma 6.(d))

P(M+
n = m) = −bU1,mu = −b

(−A−1B
)m−1A−1u. (35)

The p.g.f. of M+
n then reads

M̂+
n (z) = −bz

∑

m≥0

(− zA−1B
)mA−1u,

= −bz(A + zB)−1u, |z| ≤ 1, (36)

To complete the proof of Lemma 2 it remains to find b. We assumed that at time 0
the Qi arrival period has just started. This means that time 0 is the first time after
s(< 0) that

(
Li−1(0), Li(0), Li+1(0)

)
= (0, 1, ·) and

(
Li−1(s), Li(s), Li+1(s)

) 6= (0, 1, ·).
More specifically, given that

(
Li−1(s), Li(s), Li+1(s)

)
starts in {(0, 0, 1), (1, 0, 1)} with

steady-state distribution, the process
(
Li−1(t), Li(t), Li+1(t)

)
, s < t ≤ 0, either jumps

first into {(0, 1, 0), (0, 1, 1)}, or first into {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} and later on
into {(0, 1, 0), (0, 1, 1)}, see Figure 8. Given that

(
Li−1(s), Li(s), Li+1(s)

)
= (·, 0, 1) with

steady-state distribution, the former event occurs with a probability vector that is equal
to the probability of transition to {(0, 1, 0), (0, 1, 1)}, considered as absorbing set, that
reads (see Lemma 6.(d))

f = −(α1
i−1, α

0
i−1)

α0
i−1 + α1

i−1

( −α0
i−1 − α0

i − α1
i+1 α0

i−1

α1
i−1 −α1

i−1 − α0
i − α1

i+1

)−1

×
(

0 α0
i

0 0

)

=
(0, α1

i−1α
0
i )

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
. (37)
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(0,0,1) (1,0,1) (0,0,0) (1,0,0) (1,1,0) (1,1,1) (0,1,0) (0,1,1)

f

h

g

Chain state
       at 0

Chain state
       at s<0

Figure 8: Initial probability distribution of AMC that is equal to f + h.

Given that
(
Li−1(s), Li(s), Li+1(s)

)
= (·, 0, 1), the latter event is composed of two con-

secutive steps: the first one occurs when the process
(
Li−1(t), Li(t), Li+1(t)

)
jumps first

into {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} and the second one occurs when it jumps into
{(0, 1, 0), (0, 1, 1)}, see Figure 8. The probability vector of the first step is equal to g, see
Eq. (43). For the second step, given that the process

(
Li−1(t), Li(t), Li+1(t)

)
starts in

{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} with probability g, it is possible that the process visits
{(0, 0, 1), (1, 0, 1)} several times before it first jumps into {(0, 1, 0), (0, 1, 1)}. This occurs
with probability (see Lemma 6.(d))

h = −(α1
i−1α

1
i+1, 0, α0

i−1α
1
i+1, 0, 0, α0

i−1α
0
i )

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
·H−1 ·V, (38)

where,

H =




H11 α0
i+1 α0

i−1 0 0 0
α1

i+1 H22 0 α0
i−1 0 0

α1
i−1 0 H33 α0

i+1 α0
i 0

0 α1
i−1 α1

i+1 H44 0 α0
i

0 0 α1
i 0 H55 α0

i+1

0 0 0 α1
i α1

i+1 H66




,V =




α0
i 0

0 α0
i

0 0
0 0

α1
i−1 0
0 α1

i−1




, (39)

and the diagonal entries of H are such that He + V(1, 1)T = 0. Finally, f + h gives the
probability distribution of {(0, 1, 0), (0, 1, 1)} at time 0. Therefore, the non-zero entries of
b read

b(0, 1, 0) = (f + h)(1), b(0, 1, 1) = (f + h)(2) = 1− (f + h)(1), (40)

which completes the proof.

8.2 Proof of Lemma 3

The probability P(Mn = 0) is the probability that no Qi arrival period occurs during
the n-th cycle. This happens when no Qi−1 service period occurs between the n-th and
(n + 1)-st Qi service periods. In terms of the Markov chain (Li−1(t), Li(t), Li+1(t)), the
probability of the latter event reduces to the probability that the chain first visits the set
{(0, 0, 1), (1, 0, 1)} and later on {(0, 1, 0), (0, 1, 1)}, given the initial conditions that

(Li−1(0−), Li(0−), Li+1(0−)) ∈ {(0, 0, 1), (1, 0, 1)}, (41)
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(Li−1(0), Li(0), Li+1(0)) ∈ {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. (42)

Making the sets {(0, 0, 1), (1, 0, 1)} and {(0, 1, 0), (0, 1, 1)} absorbing, P(Mn = 0) is the
probability of absorption in {(0, 0, 1), (1, 0, 1)} given the conditions in (41) and (42).
First, let us derive the initial probability vector of the absorbing Markov chain. This
initial probability vector is equal to the probability that the process jumps into {(0, 0, 0),
(1, 0, 0), (1, 1, 0), (1, 1, 1)}, given that at initial time this process starts with the steady
state distribution in {(0, 0, 1), (1, 0, 1)}, which can be written as (see Lemma 6.(d))

g = −(α1
i−1, α

0
i−1)

α0
i−1 + α1

i−1

( −α0
i−1 − α0

i − α1
i+1 α0

i−1

α1
i−1 −α1

i−1 − α0
i − α1

i+1

)−1

×
(

α1
i+1 0 0 0
0 α1

i+1 0 α0
i

)

=
(α1

i−1α
1
i+1, α

0
i−1α

1
i+1, 0, α0

i−1α
0
i )

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
. (43)

It then follows from absorbing Markov chain analysis that (see Lemma 6.(d))

P(Mn = 0) = −g · F−1 · w,

(44)

where,

F =




F11 α0
i−1 0 0

α1
i−1 F22 α0

i 0
0 α1

i F33 α0
i+1

0 0 α1
i+1 F44


 , w =




α0
i+1

α0
i+1

0
α1

i


 ,

and where the diagonal entries of F are such that

Fe + w + (α0
i , 0, α1

i−1, α
1
i−1)

T = 0,

which completes the proof.

8.3 Proof of Lemma 4

Ξi is the duration of service interruption in Qi. Therefore, in terms of the Markov chain(
Li−1(t), Li(t), Li+1(t)

)
, Ξi is the return time of the Markov chain

(
Li−1(t), Li(t), Li+1(t)

)
to the set {(0, 0, 1), (1, 0, 1)}, given that the chain has just left this set at initial time.
Let y denote the row vector that represents the probability distribution of the states
{(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)} at the initial time. Hence, y can be
written as (see Lemma 6.(d))

y = −(α1
i−1, α

0
i−1)

α0
i−1 + α1

i−1

( −α0
i−1 − α0

i − α1
i+1 α0

i−1

α1
i−1 −α1

i−1 − α0
i − α1

i+1

)−1

×
(

α1
i+1 0 α0

i 0 0 0
0 0 0 α1

i+1 0 α0
i

)

=
(α1

i−1α
0
i+1, 0, α1

i−1α
0
i , α

0
i−1α

1
i+1, 0, α0

i−1α
0
i )

(α0
i−1 + α1

i−1)(α
0
i + α1

i+1)
. (45)
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Considering the set {(0, 0, 1), (1, 0, 1)} as an absorbing set, Ξ̃i(s) becomes the LST of the
time to absorption of

(
Li−1(t), Li(t), Li+1(t)

)
with generator matrix between transient

states A+B, given in Section 5.2, u transition rate column vector from transient states
to the absorbing set, and with initial probability distribution y. Lemma 6.(b) gives the
desired result of Ξ̃i(s).

8.4 Proof of Lemma 5

Ξ∗i is the first time after t that the server returns to Qi given that an arrival to Qi occurs
at t. Therefore, in terms of the Markov chain

(
Li−1(t), Li(t), Li+1(t)

)
the duration of Ξ∗i

is equal to the first passage time of the Markov chain
(
Li−1(t), Li(t), Li+1(t)

)
to the set

{(0, 0, 1), (1, 0, 1)} given that the chain starts in {(0, 1, 0), (0, 1, 1)} at initial time. By
analogy with the derivation of Ξ̃i(s), assuming that {(0, 0, 1), (1, 0, 1)} is an absorbing set,
Ξ̃∗i (s) becomes the LST of the time to absorption of

(
Li−1(t), Li(t), Li+1(t)

)
with A + B,

the transient states generator, u transition rate column vector from transient states to
the absorbing set, and with initial probability distribution y∗. That is, the probability
distribution that the chain starts in {(0, 1, 0), (0, 1, 1)} is given by

y∗ =
(0, α1

i+1, α
0
i+1, 0, 0, 0)

α0
i+1 + α1

i+1

. (46)

Lemma 6.(b) gives the desired result of Ξ̃∗i (s).
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