A priori error estimate and control in the eigencurrent expansion method applied to Linear Embedding via Green's Operators (LEGO)

Citation for published version (APA):

DOI:
10.1109/APS.2010.5561845

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A priori error estimate and control
in the eigencurrent expansion method applied to
linear embedding via Green’s operators (LEGO)

Vito Lancellotti*, Bastiaan P. de Hon, Anton G. Tijhuis
Dept. of Electrical Engineering, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: {v.lancellotti, b.p.d.hon, a.g.tijhuis}@tue.nl

Introduction

Linear embedding via Green’s operators (LEGO) [1, 2] is a domain decomposition
method in which the electromagnetic scattering by an aggregate of N_D bodies (im-
mersed in a homogeneous background medium) is tackled by enclosing each object
within an arbitrarily-shaped bounded domain D_k (brick), $k = 1, \ldots, N_D$ (e.g., see
Fig. 1). The bricks are characterized electromagnetically by means of scattering
operators S_{kk}, which are subsequently combined to form the total inverse scattering
operator S^{-1} of the structure [1]. Finally, we use the eigencurrent expansion method
(EEM) [1,3] to solve the relevant equation involving S^{-1}, viz.,

$$S^{-1}q^s = q^i,$$

$$q_{k}^{s,i} = \frac{\sqrt{\eta} J_{k}^{s,i} - M_{k}^{s,i}}{\sqrt{\eta}},$$

where $\eta = \sqrt{\mu/\varepsilon}$ is the intrinsic impedance of the background medium. In the
EEM we rely on the Method of Moments (MoM) to obtain a set of basis and test
functions which are approximations to the eigencurrents (i.e., eigenfunctions) of S^{-1}.

The eigencurrents serve as basis functions to expand q^s [1].

In [1, 2, 4] we numerically demonstrated that the eigencurrents can be separated
into two sub-sets, namely, coupled and uncoupled eigencurrents. In practice, only
the coupled eigencurrents contribute to the multiple scattering occurring among the
bricks which model the structure. By contrast, the uncoupled eigencurrents do not
interact with one another and give rise to a diagonal system of equations [1] —
which renders the LEGO/EEM approach computationally efficient. In fact, ordi-
narily, the number of coupled eigencurrents, $N_C N_D$, required to attain convergence
of the solution (q^s) is far smaller than the number of Rao-Wilton-Glisson (RWG) [5]
functions, $2N_F N_D$, used for the underlying MoM. As a result, we are able to solve
relatively large 3-D scattering problems.

The accuracy of the computed currents q^s is expected to improve when an increas-
ingly larger number of coupled eigencurrents $N_C N_D$ is employed in the numerical
solution of (1). Hence, it is important to have a criterion for selecting N_C a pri-
orí. To this purpose, we devised several case studies, which we solved applying
LEGO/EEM. Two meaningful examples are reported in [4], whereas in this commu-
nication we discuss a case study which involves penetrable bodies enclosed in bricks
with varying sizes. By gathering results from all of the scattering problems we ana-
alyzed, we have found out that a simple relationship exists between the 2-norm error
on q^s and the eigenvalue of $[S_{kk}]$ (i.e., the algebraic counterpart of S_{kk}) associated
Figure 1: Case study: (a) four dielectric cylinders and (b) LEGO model comprised of as many bricks with increasing edge length (the instance \(d/a = 2.22\) is shown).

with the last coupled eigencurrent retained in the calculations. In what follows we derive such a relationship and we briefly elaborate on its usage for estimating and controlling the error.

Description and discussion of a case study

We consider an aggregate [Fig. 1(a)] of \(N_D = 4\) \(x\)-aligned penetrable cylinders (\(\varepsilon = 4.8\varepsilon_0\), radius \(a\), height \(h\), \(a/h = 1.8\)) illuminated by the plane wave \(E^i = \hat{z}\exp(-j2\pi x/\lambda)\) [V/m], with \(\lambda\) the wavelength in the medium comprising the cylinders (\(a/\lambda = 0.394\)). In accordance with LEGO [1], we begin solving this scattering problem upon embedding each cylinder within a rectangularly-shaped brick (edge \(d\), height \(H = 2h\)) [Fig. 1(b)]. We allow for four different lengths of \(d\), namely, \(d/a \in \{2.22, 2.77, 3.33, 3.88\}\): This will enable us to assess the effect of \(d/a\) on the spectrum of a brick’s scattering operator \([S_{kk}]\) [1, Eq. (21)].

To compute \([S_{kk}]\), we model the surface of a cylinder and its enclosing brick with a 3-D triangular-facet mesh [1] on which we define \(N_O\) and \(2N_F\) RWG functions [5], respectively, to expand both electric and magnetic surface current densities. In particular, \(N_O = 2 \times 573 = 1146\), whereas \(2N_F \in \{768, 1080, 1440, 1848\}\), so as to ensure a constant mesh density over a brick’s surface as \(d\) is increased. Notice that Fig. 1(b) shows the bricks along with their meshes in the instance \(d/a = 2.22\) and \(2N_F = 768\). The next step consists of applying the EEM to the equation [1, Eqs. (23)-(25)]

\[
[S]^{-1}[q^s] = [q^i],
\]

which constitutes the weak form of (1). The EEM entails, among others, computing the eigenvalues \(\lambda_p\), \(p = 1, \ldots, 2N_F\), of \([S_{kk}]\).

Now, to investigate the convergence of \([q^s]\), we first obtain a reference solution by solving (2) with as many coupled eigencurrents as possible [4], i.e., \(N_{C,\text{max}}N_D = \min\{N_ON_D, 2N_FN_D\}\). Secondly, we repeatedly invert (2) employing an increasing number of coupled eigencurrents \(N_C\): We choose ten values of \(N_C < N_{C,\text{max}}\) by retaining all the eigencurrents whose corresponding eigenvalues satisfy \(|\lambda_p| \geq |\lambda_{N_C}| = 10^{-t}|\lambda_1|\), \(t = 1, \ldots, 10\). Lastly, we compute the relative error on the calcu-
Figure 2: LEGO/EEM convergence: (a) Eigenvalues of $[S_{kk}]$ vs their indices for different values of d/a. Inset: first four eigenvalues vs d/a and incident plane wave. (See text for discussion.)

\[\delta_{q^s} = \left(\frac{\| [q^s] - [q^s_{\text{MoM}}] \|_2}{\| [q^s_{\text{MoM}}] \|_2} \right), \]

where $[q^s_{\text{MoM}}]$ is the reference solution mentioned above and $\| \cdot \|_2$ denotes the vector 2-norm in the space spanned by the rows of $[S]^{-1}$.

In Fig. 2(a) we have plotted the eigenvalues of $[S_{kk}]$ versus their index p; the parameter of the lines is the ratio d/a. The round mark (o) on each line denotes the index $p = N_{C,\text{max}} = \min\{N_O, 2N_F\}$. Besides, the inset of Fig. 2(a) shows the first four eigenvalues versus d/a. Fig. 2(b) displays the error δ_{q^s} as a function of $|\lambda_{N_C}|$. The latter is the magnitude of the eigenvalue associated with the last coupled eigencurrent (contributed by a brick) retained in the calculation of $[q^s]$.

From Figs. 2(a), 2(b) we now observe:

1. Unlike the numerical experiments discussed in [4] in the present case the spectrum of $[S_{kk}]$ depends strongly on the relative shape and dimensions of the bricks and the objects inside, and especially so when $\partial \mathcal{D}_k$ “closely” wraps the object (here, for $d/a = 2.22$).

2. Remarkably enough, a simple (linear) relationship still exists between δ_{q^s} and $|\lambda_{N_C}|$, despite the conspicuous variations of the spectrum of $[S_{kk}]$ with d/a. Moreover, since the error curves plotted in Fig. 2(b) are not different from those drawn in [4, Figs. 5, 10] — which we obtained for other case studies — once again we are led to conclude that the linear behavior of δ_{q^s} must be an inherent property of the EEM applied to LEGO.

Criterion for estimating and controlling the error a priori

As argued in [4], we can exploit the error diagram of Fig. 2(b) in two manners:
Error estimate: Regarding the mapping with $|\lambda_{NC}|$ fixed, we can assess the accuracy of $[q^s]$ computed through the EEM applied with N_CN_D coupled eigen currents.

Error control: Regarding the mapping with the desired value of δ_q fixed, we can read off $|\lambda_{NC}|$, whence we determine N_C, i.e., the number of coupled eigen currents (for each brick) necessary to attain a given level of accuracy.

Finally, Fig. 2(b) points to a mathematical dependence of δ_q on $|\lambda_{NC}|$ in the form

$$\delta_q \approx |\lambda_{NC}| \times 10^\alpha,$$

where α (in light of the previous discussion and the results in [4]) is a parameter weakly dependent on geometrical and physical quantities. We have numerically found that we can conservatively set α to ≈ 3, when the relevant parameters take on values in the range of interest and applicability of LEGO/EEM. Thus, (4) represents a criterion for choosing N_C (i.e., for truncating the sub-set of coupled eigencurrents) *a priori*. For the sake of argument, if one wants to obtain $[q^s]$ with an accuracy of about 10^{-3}, from (4) one derives $|\lambda_{NC}| \approx 10^{-6}$. This means that all of the eigencurrents whose eigenvalues are in magnitude larger than 10^{-6} are to be employed in the EEM.

Acknowledgements

This research was supported by the post-doc fund under TU/e project no. 36/363450, and is performed in the framework of the MEMPHIS project (http://www.smartmix-memphis.nl). The authors would like to thank Dr D. J. Bekers from TNO, The Netherlands, for the useful discussions about the convergence of the EEM.

References

