A unified approach to the restoration of lost samples in discrete-time signals.
Veldhuis, R.N.J.; Janssen, A.J.E.M.

Published in:

Published: 01/01/1986

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 05. Dec. 2018
A UNIFIED APPROACH TO THE RESTORATION OF LOST
SAMPLES IN DISCRETE-TIME SIGNALS

R.N.J. Veldhuis, A.J.E.M. Janssen
Philips Research Laboratories, P.O. Box 80.000
5600 JA Eindhoven, The Netherlands

Abstract

We consider the problem of estimating lost sample values in discrete-time signals. The problem is treated as a linear minimum variance estimation problem, which, in principle, requires knowledge of the signal's autocorrelation coefficients. We show that, starting from this general principle, several sample restoration methods studied separately in the literature, can be derived. As particular examples we consider sample restoration methods for band-limited signals, multiple sinusoids, autoregressive processes and (quasi periodic) speech signals. The restoration method for multiple sinusoids is new, and has not, to our knowledge, been published before.

1 Introduction

In this paper we discuss some methods for the restoration of a number of lost or unknown samples occurring in a discrete-time signal. It is assumed that the positions of the unknown samples are known. Also, it is assumed that the unknown samples are embedded in a sufficiently large neighbourhood of known ones. There are no restrictions on the patterns of the unknown samples; they may occur in bursts as well as in more random patterns.

We start by deriving linear minimum variance estimates for the lost samples. The lost samples are estimated as linear combinations of known samples. Therefore, for the computation of every lost sample a set of weighting coefficients is required. The optimal coefficients, giving the estimates with the minimum error variance, are obtained as the solutions of sets of equations similar to the well-known Wiener-Hopf equations. They can be arranged conveniently in a matrix form, involving the signal's autocorrelation matrix. In principle, we have two possibilities. The first is that the signal's autocorrelation matrix is regular. Sample restoration methods for autoregressive processes [1,2] and for speech signals [3] are examples of restoration methods that can be applied in this case. The second possibility is that the signal's autocorrelation matrix is singular. Sample restoration methods for band-limited signals [4] and for multiple sinusoids are examples of methods that can be applied in that case. For both possibilities we give an analysis of the restoration error. The restoration method for multiple sinusoids is new, and has not, to our knowledge, been published before.

In the case of an autoregressive process where both the parameters and some samples are unknown we present an iterative procedure to estimate both parameters and unknown samples. This method can be applied successfully for the restoration of unknown samples in audio signals. We also present a similar procedure for the case of multiple sinusoids with unknown frequencies.

We conclude the paper by presenting some simulation results.
A linear minimum variance estimate

Let \(s=s_1, \ldots, s_n \) be a finite vector of samples taken from a stationary discrete-time stochastic signal that has zero mean. The superscript \(T \) denotes transposition. Assume that \(s_{1\ldots t} \) are unknown. Here \(1 \leq t(1) < \cdots < t(m) \leq N \) are known. The unknown samples are estimated by

\[
\begin{align*}
S_{t(i)} = \sum_{j=1}^{N} H_{ij} S_j, \quad i=1, \ldots, m,
\end{align*}
\]

where \(S_{t(i)} \) is the \(t(i) \)th unit vector of length \(N \), can be used to find the solution \(H \) of (4). Indeed, let

\[
G' = (G_{t(j)})_{i,j=1, \ldots, m}\]

Then it can be shown that \(H \), defined by

\[
H = -G'^{-1} G
\]

solves (4) provided that \(G' \) is non-singular. Now we have that

\[
G' = ((R^{-1})_{t(i)t(j)})_{i,j=1, \ldots, m}
\]

and \(G' \) is positive definite and non-singular since \(R \) is.

If \(R \) is singular, a matrix \(G \) satisfying (5) cannot always be found, but solutions for (4) may still exist. We assume that \(R \) has rank \(N-m \) or less. This assumption is not necessary, but it simplifies the following results. In that case, the null-space of \(R \) has at least dimension \(m \) and a matrix \(G \) can be found satisfying

\[
RG = [0, 0, \ldots, 0]_T
\]

To exclude \(G = [0]_T \) as a solution, we require in addition that the norms of the rows of \(G \) must all be unequal to 0. If \(G'^{-1} \) exists, \(H \) as defined in (7) is a solution of (4). In general \(G'^{-1} \) does not always exist, but it does in the special cases discussed in this paper.

The \(N \) vector \(y \) is obtained from \(z \) by substituting zeros for the unknown samples. If

\[
\bar{z} = [z_{t(1)}, \ldots, z_{t(m)}]_T
\]

and \(G \) is the solution of either (5) or (9). In the adaptive cases, that are discussed later, or if the error pattern is not known in advance, \(G \) is not known in advance. Then it is more convenient to solve \(\bar{z} \) from

\[
\bar{z} = G \bar{x}
\]

than to calculate \(G'^{-1} \). The vector \(\bar{x} \) is referred to as the syndrome.
We can derive an expression for the error covariance matrix $D := E[(\hat{Z} - Z)(\hat{Z} - Z)^T]$. It follows from (10) and (4) and the definition of v that

$$\hat{Z} = Hs + x,$$

with $x = [s_{t(1)} \ldots s_{t(m)}]^T$. Therefore,

$$D = E[HsH^T] = HH^T.$$

If R is regular, it follows on substituting (7) into (13) and using (5) that

$$D = R^{-T}.$$

If R has a rank $N - m$ or less, it follows on substituting (7) into (13) and using (9) that

$$D = 0.$$

This shows that in principle in this case an errorless restoration is possible.

So far the number of samples used to estimate the unknown samples was finite. If R, H, G are allowed to be infinite matrices the results previously obtained also apply for the estimation of unknown samples in an infinite sequence. In that case there are some additional results. For G we have

$$G_{ij} = g_{j-t(i)}, \quad i = 1, \ldots, m,$$

with the rows of G being shifted versions of an infinite vector g, which, in the case of a regular R, is defined by

$$g_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(j\theta k) dB, \quad k = -\infty, \ldots, \infty,$$

where $S(B) = \sum_{k=\infty}^{\infty} g_k \exp(-j\theta k)$ is the spectrum of the signal (s_k). In the case of a singular R, g is defined, but not uniquely, by

$$g_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(B) S(B) dB = 0,$$

where $G(B) = \sum_{k=\infty}^{\infty} g_k \exp(-j\theta k)$ is the Fourier transform of (g_k). For G' we have

$$G'_{ij} = g_{t(i) - t(j)}, \quad i, j = 1, \ldots, m,$$

and for the z of (11)

$$z_i = \sum_{k=-\infty}^{\infty} g_{t(i) - k} v_k, \quad i, j = 1, \ldots, m.$$

In general g as defined in (17), has infinite length. Therefore, in practical applications a finite approximation must be used to calculate z in (20). However, if $(s_k)_{k=\infty}^{\infty}$ is an autoregressive process of finite order p or the sum of a finite number of sinusoids, then g has finite length.

In the following, we discuss four particular examples of the general minimum variance sample restoration method. The restoration of unknown samples in autoregressive processes and in speech signals, in which cases R is a regular matrix, is discussed in Sections 3 and 4 respectively. The restoration of unknown samples in multiple sinusoids and in band-limited signals, in which cases R is a singular matrix, is discussed in Sections 5 and 6 respectively.

In all the examples to be discussed here, a vector g is derived either from (17) or (18), by making use of the signal's spectral properties. The system (11) is constructed by using (19) and (20) and is solved. The quality of a restoration depends on the error covariance matrix, given by (13) and either (14) or (15), but also on the robustness of the restoration method. This robustness is characterized for instance by the sensitivity to noise and the condition of the system (11). For some of the examples an analysis of these items is given in [2, 3, 4].

Part of the results of this section can be found in [1, 5, 6].

3 Sample restoration in autoregressive processes, [1, 2]

For an autoregressive process $(s_k)_{k=\infty}^{\infty}$ of order p and with prediction coefficients $a_0, a_1, \ldots, a_p, a_0 = 1$, we have

$$\sum_{j=0}^{p} a_j s_{k-j} = e_k, \quad k = \infty, \ldots, \infty,$$

553
where \(e_k \) is a white noise process with zero mean and variance \(\sigma_e^2 \). The signal spectrum \(S(\theta) \) is given by

\[
S(\theta) = \sigma_e^2 \left(\sum_{k=-p}^{p} b_k \exp(-j\theta k) \right)^{-1},
\]

where

\[
b_k = \sum_{j=0}^{p} a_j a_{j+k} \quad k = -p, \ldots, p.
\]

On substituting (22) into (17) we have for \(q_k \)

\[
q_k = \begin{cases}
\sigma_e^{-2} b_k, & |k| \leq p, \\
0, & \text{otherwise}.
\end{cases}
\]

Also, \(G' = \sigma_e^{-2} B_r \) with

\[
\theta_{ij} = \begin{cases}
bt(i)-t(j), & |t(i)-t(j)| \leq p, \\
0, & \text{otherwise}.
\end{cases}
\]

If, in this case, one defines the syndrome \(z \) by

\[
z_i = - \sum_{k=-p}^{p} b_k v(t(i)-k),
\]

then \(z \) can be obtained as the solution of

\[
E z = x.
\]

In [23] the solution of this system is discussed in detail. There it is shown that this system is generally very well-conditioned.

In practical situations the order of prediction and the prediction coefficients are often unknown and have to be estimated from the data. In that case the following approach [22] can be applied.

It is assumed that \(t(1) > p+1 \) and that \(t(m) < N-p \). Although several algorithms exist for the estimation of \(p \) [7], the rather arbitrary choice \(p = m \) is used instead. It produces satisfactory restoration results for the experiments done with digitized music and speech. The estimates \(\hat{a} \) and \(\hat{x} \) are the \(a \) and \(x \) that minimize

\[
Q(a, x) = \sum_{k=p+1}^{N} \sum_{j=0}^{D} a_j a_{k-j}^2 + \sum_{k=p+1}^{N} |e_k| ^2,
\]

with \(s_i = x_i \), for \(i = 1, \ldots, m \). This choice can be motivated by the facts that a) minimizing \(Q(a, x) \) as a function of \(x \) under the assumption that \(a \) is known leads to an estimate \(\hat{x} \) solving (27), and b) minimizing \(Q(a, x) \) as a function of \(a \) under the assumption that \(x \) is known and that \(s_k \) is a Gaussian process is similar to a maximum likelihood estimation procedure for \(a \) [22].

Since \(Q(a, x) \) contains 4th order terms, this minimization is a non-trivial problem. The following iterative procedure can be used. Starting with a zeroth estimate \(\hat{x}^{(0)} \), \(\hat{x}^{(0)} = 0 \), for instance, one produces a first estimate \(\hat{x}^{(1)} \) for \(x \) by minimizing \(Q(a, x)^{(0)} \) as a function of \(a \). This, in fact, comes down to the well-known autocovariance method for estimating prediction coefficients. Then, by minimizing \(Q(x^{(1)}, x) \) as a function of \(x \), one produces a first estimate \(x^{(1)} \) for \(x \), which comes down to solving the system (27). This can be repeated to obtain second estimates \(a^{(2)} \) and \(x^{(2)} \) and so on. It is clear that \(Q(a, x) \) decreases to some non-negative number but it seems hard to determine whether this number is a global minimum or not.

For digitized music, if \(m \leq 16 \), and for digitized speech, if \(m \leq 100 \), the iterative procedure just described already produces good results without audible distortion after only one iteration, although more iterations can improve the results.

4 Sample restoration in speech signals, [3]

The restoration method discussed here is essentially a restoration method for quasi-periodic signals, but it has been developed for the restoration of lost samples in speech. It can be successfully applied in Mobile Automatic Telephony (MAT) systems, where, due to fading, burst errors of up to 12.5 ms occur in the received speech signal. At a sample rate of 8 kHz, this amounts to a burst of 100 unknown samples. Because this method is greatly simplified if we deal with burst errors only, and these errors are realistic, we restrict ourselves to this type of error.

The sample restoration method presented here is based on the LPC model [9]. In this model it is
assumed that a speech signal can be described as the output signal of an all-pole filter, having a transfer function $1/A(z)$. This filter is excited either by a white noise signal, or by a (nearly) periodic signal, consisting of (nearly) equidistant pulses. In the first case one speaks of unvoiced speech, in the second case of voiced speech. In the voiced case, the distance between the pulses is called the pitch period. The pitch period is usually between 2 and 20 ms. At a sample rate of 8 kHz, this implies that the pitch period contains a number of samples, further denoted by q, that is between $q_{\text{min}}=16$ and $q_{\text{max}}=160$.

The samples in z originate either from voiced or unvoiced speech. In principle, voiced and unvoiced speech require different sample restoration methods. Here only a restoration method for voiced speech is presented. It is found in practice that this method can also be used satisfactorily on unvoiced speech. In this way a complicated and usually unreliable voiced/unvoiced decision is avoided.

A basic characteristic of voiced speech is its periodicity, the period being the pitch period. For the samples $(s_k)_{k=-\infty}^{\infty}$ we may assume that

$$s_k = c s_{k-q} + e_k, \quad k \in \mathbb{Z},$$

where c is a positive constant $0 < c < 1$, close to 1, known as the pitch coefficient. The signal e_k is a white noise process. Note that this expression is similar to (21). Therefore the same approach is applied here. Assume that c and q are known. Then, as in Section 3, we can derive a sequence

$$b_k = \begin{cases} 1, & k = 0, \\ -c/(1 + c^2), & |k| = q, \\ 0, & \text{otherwise}. \end{cases}$$

For the $m \times m$ matrix B, we then have

$$B_{ij} = \begin{cases} 1, & i = j, \\ a, & |i - j| = q, \\ 0, & \text{otherwise}. \end{cases}$$

This matrix is sparse, containing only three non-zero diagonals. The m vector z is also simple:

$$z_i = -a (v(i) - q + v(i + q), \quad i = 1, ..., m,$

with the N vector v defined in Section 2. Finally, z can be solved from (27). The factor a used in (31) and (32) is defined in (30). The simplicity of the matrix B brings down the complexity of solving the system (27) from $O(m^2)$ to $O(m)$, as is discussed in [3]. This makes the restoration of large bursts feasible in real time. Note that if $m < q$, G is the identity matrix and the restoration problem is solved by putting $x = z$. The result of this procedure is that the restored signal segment conforms to the assumed periodicity as well as possible in a quadratic sense.

In the previous part of this section it was assumed that c and q are known. Of course, c and q vary in time and have to be estimated before the system (27) can be solved. The procedure of estimating q is generally known as pitch estimation. Several suitable pitch estimation methods are discussed in [9]. A well-known method for pitch estimation that also provides an estimate for c uses the estimate

$$\hat{q}_j = 1/N \sum_{k=1}^{N-q} s_k s_{k+j}, \quad j = q_{\text{min}}, ..., q_{\text{max}}$$

for the autocorrelation function of the speech signal. It attains its global maximum at $j = 0$. If $(s_k)_{k=1}^{N}$ are samples from voiced speech, with a pitch period of q samples, the next maximum is at $j = q$. Since $q_{\text{min}} < q < q_{\text{max}}$ is the index of the global maximum in the interval $[q_{\text{min}}, q_{\text{max}}]$. The constant c in (29) can be estimated as $c = \hat{q}_0/q_0$, but experiments have shown that without loss of restoration quality, it may be fixed to a value less than but close to 1. Before calculating \hat{q}_j, the unknown samples have to be set equal to zero. In [3] a method is given to simplify the calculation of the autocorrelation coefficients.

Sample restoration in multiple sinusoids

For a signal $(s_k)_{k=-\infty}^{\infty}$ consisting of t sinusoids, with random amplitudes $(A_j)_{j=1}^{t}$ random phases $(\phi_j)_{j=1}^{t}$ uniformly distributed over the interval $[-\pi, \pi)$, and frequencies $(B_j)_{j=1}^{t}$, the spectrum is given by
The autocorrelation function of the signal is given by

\[r_k = \sum_{j=1}^{t} \frac{1}{2} A_j^2 \cos(k \theta_j). \]

It is well known that the rank of the autocorrelation matrix \(R \) of this signal is at most \(2t \), independent of the dimensions \([10]\). This implies that if \(N \geq 2t+m \), a matrix \(G \) has to be found that satisfies (9). In the following we assume that \(N \geq 4t+m \), and that \(t(1) \geq 2t+1 \) and \(t(m) \geq N-2t \).

Let the \(2t+1 \) vector \(u = (u_k)_{k=0}^{2t} \) be a vector in the null-space of the \((2t+1) \times (2t+1)\) autocorrelation matrix \(R \). If we define the sequence

\[g_k = \sum_{j=1}^{2t+1} u_j u_{j+|k|} \text{ for } k = -2t, ..., 2t, \]

then it can be shown that \(g_k = 0 \) for \(k = -2t, ..., 2t \) in the null-space of the \((4t+1) \times (4t+1)\) autocorrelation matrix \(R \). Moreover, since the Fourier transform \(U(\theta) \) of \((u_k)_{k=0}^{2t} \) has zeros at frequencies \(\theta_j \), \(G(\theta) = |U(\theta)|^2 \) satisfies (18) and \(g \) and \(G \) can be obtained by using (18) and (19). The unknown samples can be calculated by constructing the syndrome \(z \) according to (20) and by solving the system (11).

In the previous derivation, \(u \) could have been used instead of \(g \), since replacing \(U(\theta) \) in (18) by \(U(\theta) \) gives the same result. However, by using \(g \) as defined in (36) it is guaranteed that the matrix \(G' \) in (11) is positive definite and therefore the system (11) can be solved.

In this case the restoration method can also be made adaptive. This is useful if the number of sinusoids in the signal and their frequencies are unknown and both \(u \) and \(x \) have to be estimated from the available data. Let in this case \(t \) be an upper bound for the maximum number of sinusoids in the signal. The estimates \(\hat{u} \) and \(\hat{x} \) can be found by minimizing

\[P(\lambda, u, x) = \sum_{k=2t+1}^{N} |u_k|^2 + \lambda (u^T u - 1) \]

as a function of \(\lambda, u \) and \(x \), with \(s_{i(t)} = x_i \) for \(i = 1, ..., m \). This choice can be motivated by the facts that a) minimizing \(P(\lambda, u, x) \) as a function of \(x \) under the assumption that \(\lambda \) and \(u \) are known leads to an estimate \(\hat{x} \) solving (11), and b) minimizing \(P(\lambda, u, x) \) as a function of \(\lambda \) and \(u \) under the assumption that \(\lambda \) is known leads to estimates \(\hat{u} \) and \(\hat{\lambda} \) for the minimum eigenvalue and the corresponding eigenvector of the \((2t+1) \times (2t+1)\) autocorrelation matrix \(C = (c_{ij})_{i,j=0}^{2t} \), with

\[c_{ij} = \sum_{k=2t+1}^{N} s_{k-i} s_{k-j} \text{ for } i, j = 0, ..., 2t. \]

As in the case of the sample restoration in autoregressive processes in Section 3 minimizing \(P(\lambda, u, x) \) can be done iteratively. Starting with a zeroth estimate \(\hat{x}(0) \), \(\hat{x} \), for instance, one produces first estimates \(\hat{\lambda}(1) \) and \(\hat{u}(1) \) for \(u \) by minimizing \(P(\lambda, u, x(0)) \) as a function of \(\lambda \) and \(u \). Then, by minimizing \(P(\hat{\lambda}(1), \hat{u}(1), x(1)) \) as a function of \(x \), one produces a first estimate \(\hat{z}(1) \) for \(z \). This can be repeated to obtain second estimates \(\hat{\lambda}(2) \), \(\hat{u}(2) \) and \(\hat{z}(2) \) and so on. Again it is clear that, since \(C \) is positive definite, \(P(\lambda, u, x) \) decreases to some non-negative number but it seems hard to determine whether this number is a global minimum or not.

If the iteration process converges to the correct minimum, \(\lambda(1) \) will converge to zero, because the covariance matrix becomes singular. The value of \(\lambda(1) \) can then be used as a criterion to stop the iteration process.

6 Sample restoration in band-limited signals, [4]

In the case of a band-limited signal, the signal spectrum \(S(\theta) \) is zero on one or more subintervals of the interval \([-\pi, \pi]\). Any function \(G(\theta) \) that is zero on the subintervals where \(S(\theta) \) is non-zero satisfies (18). To ensure that \(G' \) in (11) is positive definite we demand that \(G(\theta) \) is positive
on the subintervals where \(S(\theta) \) is zero. Unfortu-
nately, a sequence that has a Fourier transform
that is zero over some subinterval of \([-\pi, \pi]\) has
in principle infinite length. The finite sequence
\(\{g_k\}_{k=-p, \ldots, 0} \) for some \(p \) that is used in practi-
cal cases, is always an approximation of the ideal
infinite sequence.

As an example we consider a low-pass signal that
is band-limited to the subinterval \((-\pi, \pi)\),
\(0 < \alpha < 1 \). The ideal \(G(\theta) \) is a high-pass filter, being
zero on the subinterval \((-\pi, \alpha \pi)\), \(0 < \alpha < 1 \), and one
on the subintervals \((-\pi, -\alpha \pi)\) and \((\alpha \pi, \pi]\). For \(g_k \)
we then have
\[
\sin(\alpha k \pi) = \frac{\sin(\pi k)}{k \pi}, \quad k = -\infty, \ldots, \infty.
\]

In [4] the robustness of this method has been
investigated for bursts of unknown samples in
low-pass signals. In particular the condition of
the system (11) is considered. The main conclusion
is that for larger amounts of unknown samples this
method is very sensitive to out-of-band components
in the signal. It can be shown that in the case of
a band-limited signal, corrupted by white noise
with a variance \(\sigma^2 \), the restoration error
\(W(t(1), \ldots, t(m)) \) as defined in (2) is given by
\[
W(t(1), \ldots, t(m)) = \sigma^2 \text{trace}(G^{-1}),
\]
where \(t(i) = t(i-1)+1, \ i = 2, \ldots, m \). In [4] it has been
shown that \(\text{trace}(G^{-1}) \) increases roughly as
\(\exp(\alpha \pi \pi/2) \). This shows that even for small bursts
and small \(\alpha \) the restoration error can become
large.

7 Results

In [1,2,3,4] an extensive account is given of
the performance of the sample restoration methods
for autoregressive processes, speech signals and
band-limited signals. The main conclusions are
summarized here. The use of the restoration method
for speech signals is restricted to speech signals
only. For these signals the method performs very
well. The restoration method for autoregressive
processes is more general, because many signals can
be modeled in that way. It has turned out that
especially for signals with a peaky spectrum, such
as music, speech and multiple sinusoids the method
performs very well. An advantage is that it is
relatively insensitive to the presence of noise.

The restoration method for band-limited signals
only works if the input signal has no out-of-band
components and if the product of bandwidth and
number of unknown samples is small. In other cases
large errors are made.

Here we present a comparison of the restoration
method for autoregressive processes, being the best
of the known methods discussed here, and the new
restoration method for multiple sinusoids. The test
signals are the same sinusoids as in [2]. The
noiseless signal is given by
\[
s_k = 100 \sin(0.23 \pi k + 0.3 \pi) +
60 \sin(0.4 \pi k + 0.3 \pi), \quad k = 1, \ldots, N,
\]
two other test sequences were generated by adding
Gaussian white noise. The signal-to-noise ratios
are respectively 40dB and 20dB. The pattern of
unknown samples is a burst of length \(m=16 \). The
methods were both tried on a short segment of
length \(N=64 \) and on a longer one of length \(N=512 \).
For both methods results are given after one and
after three iterations. In the case of the restora-
method for autoregressive processes \(p \) denotes
the assumed order of the process, in the case of
the restoration method for multiple sinusoids \(\alpha = 2 \),
where \(t \) is the assumed upper bound for the number
of sinusoids. For \(p \) the values \(p=4 \), corresponding
to the true number of sinusoids, and \(p=10 \) were
tried. The restoration errors \(e \), defined by
\[
e = \frac{|s - x|^2/m}{|s|^2/N},
\]
are presented in Table 1. The restoration errors
obtained by the restoration method for autoregres-
sive processes are denoted by \(a_i \), the restoration
errors obtained by the restoration method for
multiple sinusoids are denoted by \(s_i \). Here the
subscript \(i \) denotes the number of iterations.
Table 1. Restoration errors in multiple sinusoids, given by (40), for various signal-to-noise ratios.

In the cases denoted by XXXXXXX the restoration error could not be calculated, because the routines calculating the prediction coefficients and the eigenvalues failed. This was caused by singularity of the matrix \(C \) in (38).

From Table 1 it can be seen that the restoration method for sinusoids performs better, especially with respect to the convergence rate, on the noise-free test signals. If the signal is noisy the assumed order must be correct, or at least not too high, otherwise the performance of the restoration method for multiple sinusoids decreases significantly compared to the other method. Inspection of G(\(\theta \)) in this case shows that in the case of the restoration method for multiple sinusoids, many spurious dips appear. This leads to other frequency components in the restored part. The restoration method for autoregressive processes, on the contrary, shows an increased performance if the assumed order is increased.

If we consider the complexity of both methods, then it is clear that the restoration method for multiple sinusoids is the most complex one, because it requires the computation of an eigenvalue and an eigenvector. The order of complexity of this is \(O(p^4) \), whereas the order of complexity of the calculation of the prediction coefficients in the restoration method for autoregressive processes is \(O(p^3) \). For the eigenvector problem iterative methods, which take fewer operations, have been proposed in the literature, e.g. [11].

Owing to the higher complexity and the fact that the performance decreases if the number of sinus-

oids is assumed too high, the restoration method for multiple sinusoids is most suitable in cases where the number of sinusoids is known and low. In those cases, the convergence rate is high.

References

