Erratum: "Anticipating synchronization of chaotic Lur'e systems" [Chaos 17, 013117 (2007)]
Huijberts, H. J. C.; Nijmeijer, H.; Oguchi, T.

Published in:
Chaos

DOI:
10.1063/1.2835355
10.1016/S0960-0779(02)00633-1
Published: 01/01/2008

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Sep. 2017
Erratum: “Anticipating synchronization of chaotic Lur’e systems” [Chaos 17, 013117 (2007)]

Henri Huijbers,1 Henk Nijmeijer,2 and Toshiki Oguchi3
1School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
2Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
3Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiioji-shi, Tokyo 192-0397, Japan

(Received 13 November 2007; accepted 27 December 2007; published online 5 February 2008)

[DOI: 10.1063/1.2835355]

I. INTRODUCTION

It has been brought to our attention that there is a small yet annoying error in our manuscript “Anticipating synchronization of chaotic Lur’e systems.” It is the purpose of this note to provide a complete correction.

II. ERRATA

In the integral in the expression of \(\dot{V}_2(e) \) in Eq. (B5), the following terms are missing: \(2 \tau \psi(x(t), e(t))B^TZA_0e(t) \) and \(2 \tau \psi(x(t), e(t))B^TZA_1e(t-\tau) \). As a consequence, the matrix \(A_1 \) at the bottom of page 11 should become

\[
A_1 = \begin{pmatrix}
A_TZ_0 & A_TZ_1 & A_TZ_2 - Y \\
A_TZ_0 & A_TZ_1 & A_TZ_2 - W \\
B^TZA_0 & B^TZA_1 & B^TZA_2 - W
\end{pmatrix},
\]

and the linear matrix inequality (LMI) [Eq. (B2)] can be simplified to

\[
\begin{pmatrix}
PA_0 + A^TP + Y + Y^T + Q & PA_1 - Y + W^T & PB + \gamma \lambda C^T - \tau Y & \bar{\tau}A_TZ \\
A^TP - Y^T + W & -Q - W - W^T & 0 - \tau W & \bar{\tau}W^T \\
B^TP + \gamma \lambda C & 0 - 2\lambda & 0 - \tau Z & 0 \\
-\bar{\tau}Y & -\bar{\tau}W^T & 0 - \bar{\tau}Z & 0 \\
\bar{\tau}Z & \bar{\tau}A_1 & \bar{\tau}Z & 0 - \bar{\tau}Z
\end{pmatrix} < 0.
\]

The formulation of Theorem 3 then becomes as follows.

Theorem 3: Let \(\bar{\tau} > 0 \) be given. Assume that there exist scalars \(\alpha, \lambda > 0 \) and matrices \(P > 0, Q > 0, X, Y, \) and \(W \) such that the following LMI holds:

\[
\begin{pmatrix}
PA + A^TP + Y + Y^T + Q & X - Y + W^T & PB + \gamma \lambda C^T - \tau Y & \alpha \bar{\tau}A_T^TP \\
X^T - Y^T + W & -Q - W - W^T & 0 - \tau W & \alpha \bar{\tau}X^T \\
B^TP + \gamma \lambda C & 0 - 2\lambda & 0 - \alpha \bar{\tau}P & 0 \\
-\bar{\tau}Y & -\bar{\tau}W^T & 0 - \alpha \bar{\tau}P & 0 \\
\alpha \bar{\tau}PA & \alpha \bar{\tau}X & \alpha \bar{\tau}PB & 0 - \alpha \bar{\tau}P
\end{pmatrix} < 0.
\]

Define the matrices

\[
N := \begin{pmatrix}
-\bar{\tau} & \alpha \bar{\tau}A^T \\
-\bar{\tau} & \alpha \bar{\tau}X \\
0 & \alpha \bar{\tau}B^T
\end{pmatrix}, \quad \Pi := -\alpha \text{ diag}(P, P),
\]

\[
\Gamma := \begin{pmatrix}
PA + A^TP + Y + Y^T + Q & X - Y + W^T & PB + \gamma \lambda C^T \\
X^T - Y^T + W & -Q - W - W^T & 0 \\
B^TP + \gamma \lambda C & 0 - 2\lambda
\end{pmatrix}, \quad \Delta := \Pi N^{-1} \Gamma^T,
\]

and let \(\bar{\tau}^* \) be the minimum eigenvalue of the matrix pencil \((\Gamma, -\Delta)\). Then \(\bar{\tau} > \bar{\tau} \) and for \(\mathcal{M} = P^{-1}X \) the dynamics (19) are asymptotically stable for every \(0 < \tau < \bar{\tau}^* \).
ACKNOWLEDGMENTS

The authors would like to thank Patrick Neefs2 for pointing out the mistake in their original paper.1

1H. Huijberts, H. Nijmeijer, and T. Oguchi, Chaos \textbf{17}, 013117 (2007).
2P. J. Neefs (private communication).